9th math

bihar board class 9th maths | (हीरोन सूत्र)

bihar board class 9th maths | (हीरोन सूत्र)

Bihar Board Solutions for Class 9 Maths Chapter 12 Heron’s Formula (हीरोन सूत्र)

प्रश्नावली 12.1

प्रश्न 1. एक यातायत संकेत बोर्ड पर ‘आगे स्कूल है’ लिखा है और वह भुजा वाले एक समबाहु त्रिभुज के आकार का है। हीरोन के सूत्र का प्रयोग करके इस बोर्ड का क्षेत्रफल ज्ञात कीजिए। यदि संकेत बोर्ड का परिमाप 180 cm है. तो इसका क्षेत्रफल क्या होगा?
उत्तर:

समबाहु त्रिभुज की भुजा = a
हम जानते हैं,
s = 1/2 (a + a + a) = 3a/2
अव: त्रिभुज का क्षेत्रफल
Bihar Board Class 9 Maths Solutions Chapter 12 हीरोन का सूत्र Ex 12.1
त्रिभुज का परिमाप = 180 cm
a + a + a = 180 ⇒ 3a = 180 ⇒ a = 60 cm
अत: अभीष्ट क्षेत्रफल = 3/4 (60)² = 900 √3 cm².

प्रश्न 2.किसी फ्लाईओवर (flyover) की त्रिभुजाकार दीवार को विज्ञापनों के लिए प्रयोग किया जाता है। दीवार की भुजाओं की लम्बाइयाँ 122 m, 22 m और 120 m. (पाठ्य पुस्तक में आकृति देखिए)। इस विज्ञापन से प्रति वर्ष Rs 5000 प्रति m² की प्राप्ति होती है। एक कम्पनी ने एक दीवार को विज्ञापन देने के लिए 3 महीने के लिए किराए पर लिया। उसने कुल कितना किराया दिया?
उत्तर:
माना दीवार की भुजाएँ a = 120 m, b = 22 m तथा c = 122 m
∵ s = 1/2 (a + b + c)
1/2 (120 + 22 + 122) = 132 m
अत: त्रिभुज का क्षेत्रफल

= 10 × 11 × 12
= 1320 m²
किराए की दर = Rs 5000 प्रति m² प्रति वर्ष
⇒ 3 महीने के लिए कम्पनी द्वारा विज्ञापन के लिए दिया गया किराया = Rs (5000 × 1320 – 3/12) = Rs 16,50,000

प्रश्न 3. किसी पार्क में एक फिसलपट्टी (slide) बनी हुई है। इसकी पाश्वीय दीवारों (sidewalls) में से एक दीवार पर किसी रंग से पेंट किया गया है और उस पर पार्कको हरा-भरा और साफ रखिए” लिखा हुआ है। (पाठ्य पुस्तक में आकृति देखिए)। यदि इस दीवार की विमाएं 15 m, 11 m और 6 m, तो रंग से पेंट ए भाग का क्षेत्रफरल ज्ञात कीजिए।
उत्तर:

नाना दीवार की भुजाएँ – 15 m, b = 11 m तथा c = 6 m
∵ s = 1/2 (a + b + c) = 1/2 (15 + 11 + 6) = 16 m
∴ त्रिभुज का क्षेत्रफल

अतरंग से पेट हुए भाग का क्षेत्रफल
= दीवार का के. = 20√2 m²

प्रश्न 4. उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसकी दो भुजाएं 18 cm और 10 cm तथा उसका परिमाप 42 cm है।
उत्तर:
माना त्रिभुज की तीसरी भुजा c है।
परिमाप = 42
∴ a + b + c = 42
18 + 1 + c = 43
⇒ c = 14 cm
हम जानते हैं, s = 1/2 (a + b + c)
1/2 (18 + 10 + 14) = 21 cm
अत: प्रिभुज का क्षेत्रफल

प्रश्न 5. एक त्रिभुज की भुजाओंका अनुपात 12 : 17 : 25 है और उसका परिमाप 540 cm है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
उत्तर: 

माना त्रिभुज ABC की भुजाएँ तथा हैं।
∴ a : b : c = 12 : 17 : 25.
⇒ a/12 = b/17 = c/25 = k (माना)
⇒ a = 12k, b = 17k, c = 25k
तथा परिमार = 540 cm
⇒ a + b + c = 540
⇒ 12k + 17k + 25k = 540 ⇒ k = 10
⇒ k = 10
तथा a = 12k = 12 × 10 = 120 cm
b = 17k = 17 × 10 = 170 cm
c = 25k = 25 × 10 = 250 cm
s = 1/2 (a + b + c)
1/2 × (540) = 270 cm
अत: त्रिभुज का क्षेत्रफल
Bihar Board Class 9 Maths Solutions Chapter 12 हीरोन का सूत्र Ex 12.1
= 100 × 3 × 1 × 5 × 2 = 9000 cm².

प्रश्न 6. एक समद्विबाहु त्रिभुज का परिमाप 30 cm है और उसकी बराबर भुजाएँ 12 cm लम्बाई की है। इस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
उत्तर:

माना बराबर भुनाएँ a = b = 12 cm तथा तीसरी भुजा c है।
परिमाप = 30
⇒ a + b + 0 = 30
⇒ 12 + 12 + c = 30
⇒ c = 6 cm
हम जानते हैं,
s = 1/2 (a + b + c) = 1/2 (12 + 12 + 6) = 15 cm
∴ त्रिभुज का क्षेत्रफल

प्रश्नावली 12.2

प्रश्न 1. एक पार्क चतुर्भुज ABCD के आकार का है, जिसमें ∠C = 90°, AB = 9m. BC = 12m, CD = 5 m और AD = 8 m है। इस पार्क का क्षेत्रफल कितना है?
उत्तर:


∆BCD में,
पादपागोरस प्रमेय से,
BD² = BC² + CD²
⇒ BD² = (12)² + (5)²
⇒ BD² = 169
⇒ BD² = 13 m
∴ ∆BCD का.

प्रश्न 2. एक चतुर्भुज ABCD का क्षेत्रफल ज्ञात कीजिए, जिसमें AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm और AC = 5 है।
उत्तर:

पाइथागोरस प्रमेय से.
AC² = AB² + BC²
⇒ (5)² – (3)² + (4)²
⇒ 25 = 25
अत: ∆ABC एक समकोण त्रिभुज है।
⇒ ∆ABC का क्षेत्रफल

प्रश्न 3. राधा ने एक रंगीन कागज से एक हवाई जहाज का चित्र बनाया, जैसा कि आकृति 12.6 में दिखाया गया है। प्रयोग किए गए कागज का कुल क्षेत्रफल ज्ञात कीजिए।

उत्तर:
(i) भाग का क्षेत्रफल

(ii) भाग का क्षेत्रफल
लम्बाई × चौड़ाई = 6.5 × 1 = 6.5 cm².

(iii) भाग का क्षेत्रफल-
समलम्बचतुर्भुज का क्षेत्रफल

प्रश्न 4. एक त्रिभुज और एक समाजर चतुर्भज का एक ही आधार है और क्षेत्रफल भी एक ही है। यदि त्रिभुज की भुजाएँ 26 cm, 28 cm और 30 cm है तथा समान्तर चतुर्भुज 28 cm के आधार पर स्थित है, तो उसकी संगत ऊँचा ज्ञात कीजिए।
उत्तर:

नाना त्रिभुज की भुजाएँ a = 26 cm b = 28 cm तथा c = 30 cm

प्रश्न 5. एक समचतुर्भुजाकार धाम के खेत में 18 गावों के चरने के लिए घास है। यदि इस समचतर्भज की प्रत्येक भजा 30 m है और बड़ा विकर्ण 48 m है, तो प्रत्येक गाय को चरने के लिए इस पास के खेत का कितना क्षेत्रफल प्राप्त होगा?
उत्तर:
घास समचतुभुजाकार है तो विकर्ग परस्पर समकोण पर समति भाजित करेंगे।

प्रश्न 6. दो विभिन्न रंगों के कपड़ों के 10 त्रिभुजाकार टुकड़ों को सीकर एक छाता बनाया गया है (पाठ्य पुस्तक में आकृति देखिए) प्रत्येक टुकड़े के माप 20 cm, 50 cm और 50 cm हैं। छाने में प्रत्येक रंग का कितना कपड़ा लगा है?
उत्तर:

गाना a = 20 cm, b = 50 cm तथा c = 30 cm

= 200√6 cm²
∴ 10 त्रिभुजाकार टुकड़ों से खाता बना है। अत: दोनों रंगों के समान अर्थात् 5 – 5 टुकड़े लगेंगे।
माना पहले पीले रंग के टुकड़े का क्षेत्रफल
= 5 × 200 √6 = 1000 √6 cm²
नषा दूसरे लाल रंग के टुकड़े का क्षेत्रफला
= s × 200 √6 = 1000 √6 cm².

प्रश्न 7. एक पतंग तीन भिन-भिन शेडों (Shades) के कागजों से बनी है। इन्हें पाठ्य पुस्तक में दी गई आकृति में I, II और III से दर्शाया गया है। पतंग का ऊपरी भाग 32 cm विकर्ण का एक वर्ग है और निचला भाग 6 cm, 6 cm और 8 cm भुजाओं का एक सपद्विबाहु त्रिभुज है। ज्ञात कीजिए कि प्रत्येक शेड का कितना कागज प्रयुक्त किया गया है।
उत्तर:

माना ABCD एक वर्ग है जिसकी भुजा a cm नया विकर्ण AC = BD = 32 cm
समकोण त्रिभुव ABC मैं,
AB² + BC² = AC²
⇒ a² + a² = (32)²
⇒ 2a² = 32 × 32

प्रश्न 8. फर्श पर एक फूलों का डिजाइन 16 त्रिभुजाकार टाइलों से बनाया गया है, जिनमें से प्रत्येक की भुजाएँ9 cm, 28 cm और 35 cm हैं (पाठ्य पुस्तक में आकृति देखिए)। इन टाइलों को 50 पैसे प्रति cm² की दर से पालिश कराने का व्यय ज्ञात कीजिए।
उत्तर:

दिया है, त्रिभुजाकार को भुजाएँ 9 cm, 28 cm तथा 35 cm
माना a = 9 cm, b = 28 cm नया c = 35 cm

प्रश्न 9. एक खेत समलम्ब के आकार का है जिसकी समानर भुजाएँ 25 m और 10 m हैं। इसकी असमान्तर भुजाएँ 14 m और 13 m हैं। इस खेत का क्षेत्रफल ज्ञात कीजिए।
उत्तर:

हम जानते हैं. AP = BQ

Leave a Reply

Your email address will not be published. Required fields are marked *