10 Math

bihar board class 10th maths | पृष्ठीय क्षेत्रफल एवं आयतन

bihar board class 10th maths | पृष्ठीय क्षेत्रफल एवं आयतन

Bihar Board Solutions for Class 10 Maths Chapter 13 Surface Areas and Volumes (पृष्ठीय क्षेत्रफल एवं आयतन)

प्रश्नावली 13.1

जब तक अन्यथा न कहा जाए, π = \frac { 22 }{ 7 } लीजिए |

प्रश्न 1. दोघनों, जिनमें से प्रत्येक का आयतन 64 cm3 है, के संलग्न फलकों को मिलाकर एक ठोस बनाया जाता है। इससे प्राप्त घनाभ का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
हल:

Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.1 Q1
माना प्रत्येक घन की भुजा x cm है।
घन का आयतन = (भुजा)3 = x3 cm3
प्रत्येक घन का आयतन = 64 cm3 (दिया है)
x3 = 64
⇒ x3 = (4)3
⇒ x = 4 cm
प्रत्येक घन की भुजा 4 cm है।
दो घनों को मिलाकर एक घनाभ बनाया जाता है।
तब प्राप्त घनाभ की लम्बाई (l) = (4 + 4) = 8 cm, चौड़ाई (b) = 4 cm तथा ऊँचाई (h) = 4 cm
घनाभ का पृष्ठीय क्षेत्रफल = 2(lb + bh + hl)
= 2[(8 × 4) + (4 × 4) + (4 × 8)]
= 2[32 + 16 + 32]
= 2 × 80
= 160 cm2
अतः प्राप्त घनाभ का पृष्ठीय क्षेत्रफल = 160 cm2

प्रश्न 2. कोई बर्तन एक खोखले अर्द्धगोले के आकार का है जिसके ऊपर एक खोखला बेलन अध्यारोपित है। अर्द्धगोले का व्यास 14 cm है और इस बर्तन (पात्र) की कुल ऊँचाई 13 cm है। इस बर्तन का आन्तरिक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
हल:


चित्र की भाँति अर्द्धगोले पर बेलन अध्यारोपित किया गया है।
अर्द्धगोले का व्यास = 14 cm
अर्द्धगोले की त्रिज्या (r) =  व्यास/2 = 7 cm
तब, बेलन की त्रिज्या (r) = अर्द्ध गोले की त्रिज्या = 7 cm
बर्तन की कुल ऊँचाई 13 cm है जो बेलन की ऊँचाई h तथा अर्द्धगोले की त्रिज्या r के योग के बराबर है।
h + r = 13
⇒ h + 7 = 13
⇒ h = 13 – 7 = 6 cm
बेलन की ऊँचाई (h) = 6 cm
तब, बेलनाकार भाग का वक्र पृष्ठीय क्षेत्रफल = 2πrh
तथा अर्द्धगोलीय भाग का वक्र पृष्ठीय क्षेत्रफल = 2πr2
बर्तन का कुल आन्तरिक पृष्ठ = 2πrh + 2πr2 = 2πr(h + r)
= 2 × \frac { 22 }{ 7 } × 7(7 + 6) cm2
= 2 × 22 × 13 cm2
= 572 cm2
अत: बर्तन (पात्र) का कुल आन्तरिक पृष्ठीय क्षेत्रफल = 572 cm2

प्रश्न 3. एक खिलौना त्रिज्या 3.5 cm वाले एक शंकु के आकार का है, जो उसी त्रिज्या वाले एक अर्द्धगोले पर अध्यारोपित है। इस खिलौने की सम्पूर्ण ऊँचाई 15.5 cm है। इस खिलौने का सम्पूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
हल:


दिया है, अर्द्धगोले पर समान परिच्छेद क्षेत्रफल के आधार वाला शंकु अध्यारोपित कर खिलौना बनाया गया है।
शंकु के आधार की त्रिज्या (r) = 3.5 cm
गोले की त्रिज्या (r) = 3.5 cm
खिलौने की कुल ऊँचाई = शंकु की ऊँचाई + अर्द्धगोले की त्रिज्या
15.5 cm = शंकु की ऊँचाई (h) + 3.5 cm
शंकु की ऊँचाई (h) = (15.5 – 3.5) cm = 12 cm
तब, शंकु की तिर्यक ऊँचाई (l)
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.1 Q3.1
तब, शंकु का वक्र पृष्ठीय क्षेत्रफल = πrl
= \frac { 22 }{ 7 } × 3.5 × 12.5
= 137.5 cm2
और अर्द्धगोले का पृष्ठीय क्षेत्रफल = 2πr2
= 2 × \frac { 22 }{ 7 } × 3.5 × 3.5
= 77 cm2
खिलौने का सम्पूर्ण पृष्ठीय क्षेत्रफल = शंकु का वक्र पृष्ठीय क्षेत्रफल + अर्द्धगोले का पृष्ठीय क्षेत्रफल
= (137.5 + 77) cm2
= 214.5 cm2
अत: खिलौने का सम्पूर्ण पृष्ठीय क्षेत्रफल = 214.5 cm2

प्रश्न 4. भुजा 7 cm वाले एक घनाकार ब्लॉक के ऊपर एक अर्द्धगोला रखा हुआ है। अर्द्धगोले का अधिकतम व्यास क्या हो सकता है? इस प्रकार बने ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
हल:


अर्द्धगोले का आधार घन के ऊपरी फलक पर टिका है।
अर्द्धगोले का अधिकतम व्यास = घन की भुजा = 7 cm
अर्द्धगोले की त्रिज्या (r) = 7/2 cm
तब, ठोस का पृष्ठीय क्षेत्रफल = घन का सम्पूर्ण पृष्ठ + अर्द्धगोले का वक्र पृष्ठ – वृत्तीय आधार का क्षेत्रफल

अत: अर्द्धगोले का अधिकतम व्यास = 7 cm
तथा ठोस का पृष्ठीय क्षेत्रफल = 332.5 cm2

प्रश्न 5. एक घनाकार ब्लॉक के एक फलक को अन्दर की ओर से काटकर एक अर्द्धगोलाकार गड्ढा इस प्रकार बनाया गया है कि अर्द्धगोले का व्यास घन के एक किनारे के बराबर है। शेष बचे ठोस का पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
हल:


दिया है, अर्द्धगोले का व्यास = घन की भुजा = a
अर्द्धगोले की त्रिज्या (r) = a/2
अर्द्धगोलाकार गड्ढा बनाने पर घन के पृष्ठ में अर्द्धगोले के वक्रपृष्ठ के बराबर क्षेत्र बढ़ जाएगा।
परन्तु अर्द्धगोले के आधार के क्षेत्रफल के बराबर क्षेत्र कम हो जाएगा।
अतः शेष बचे ठोस का पृष्ठीय क्षेत्रफल = घन का पृष्ठीय क्षेत्रफल + अर्द्धगोले का वक्रपृष्ठ – अर्द्धगोले के आधार का क्षेत्रफल
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.1 Q5.1
अत: शेष बचे ठोस का आयत = a2/4 (π + 24) जहाँ a घन की भुजा है।

प्रश्न 6. संलग्न चित्र में, दवा का एक कैप्सूल (capsule) एक बेलन के आकार का है जिसके दोनों सिरों पर एक-एक अर्द्धगोला लगा हुआ है। पूरे कैप्सूल की लम्बाई 14 mm है और उसका व्यास 5 mm है। इसका पृष्ठीय क्षेत्रफल ज्ञात कीजिए।

हल:

दिया है, कैप्सूल की लम्बाई = 14 mm
कैप्सूल का व्यास = 5 mm
कैप्सूल की त्रिज्या (r) =  mm
बेलनाकार भाग की त्रिज्या (r) =  mm
बेलनाकार भाग की लम्बाई = 14 – (2.5 + 2.5) = 9 mm
चित्र से स्पष्ट है कि
कैप्सूल की लम्बाई = (2 × अर्द्धगोले की त्रिज्या) + बेलनाकार भाग की ऊँचाई
14 = 2r + h
⇒ 2r + h = 14 …….(1)
कैप्सूल का पृष्ठीय क्षेत्रफल = (2 × अर्द्धगोले का वक्र पृष्ठ) + बेलन का वक्र पृष्ठ
= 2 × 2πr2 + 2πrh
= 2πr(2r + h)
= 2 ×  ×  × 14
= 220 mm2 [समीकरण (1) से]
अत: कैप्सूल का पृष्ठीय क्षेत्रफल = 220 mm2

प्रश्न 7. कोई तम्बू एक बेलन के आकार का है जिस पर एक शंकु अध्यारोपित है। यदि बेलनाकार भाग की ऊँचाई और व्यास क्रमश: 2.1 m और 4 m हैं तथा शंकु की तिर्यक ऊँचाई 2.8 m है तो इस तम्बू को बनाने में प्रयुक्त कैनवास (canvas) का क्षेत्रफल ज्ञात कीजिए। साथ ही, ₹ 500 प्रति m2 की दर से इसमें प्रयुक्त कैनवास की लागत ज्ञात कीजिए। (ध्यान दीजिए कि तम्बू के आधार को कैनवास से नहीं ढका जाता है।)
हल:


बेलनाकार भाग के लिए,
बेलनाकार भाग का व्यास = 2.1 m

= 9.24 m2
पूरे तम्बू का पृष्ठीय क्षेत्रफल = बेलनाकार भाग का पृष्ठीय क्षेत्रफल + शंक्वाकार भाग का पृष्ठीय क्षेत्रफल
= (26.4 + 9.24) m2
= 35.64 m2
अतः तम्बू में प्रयुक्त कैनवास का क्षेत्रफल = 35.64 m2
तथा कैनवास की लागत = 500 × 35.64 = ₹ 17820

प्रश्न 8. ऊँचाई 2.4 cm और व्यास 1.4 cm वाले एक ठोस बेलन में से इसी ऊँचाई और इसी व्यास वाला एक शंक्वाकार खोल (cavity) काट लिया जाता है। शेष बचे ठोस का निकटतम वर्ग सेन्टीमीटर तक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
हल:


दिया है, बेलन का व्यास = 1.4 cm
बेलन की त्रिज्या (r) = 0.7 cm
तथा बेलन की ऊँचाई (h) = 2.4 cm
बेलन का वक्र पृष्ठ = 2πrh
= 2π × 0.7 × 2.4
= 3.36π cm2
बेलन के आधार का क्षेत्रफल = πr2
= π × 0.7 × 0.7
= 0.49π cm2
अब, शंकु की त्रिज्या (r) = बेलन की त्रिज्या = 0.7 cm
शंकु की ऊँचाई (h) = बेलन की ऊँचाई = 2.4 cm

= 2.5 cm
तब, शंकु का वक्र पृष्ठीय क्षेत्रफल = πrl
= π × 0.7 × 2.5
= 1.75π cm2
शेष बचे ठोस का पृष्ठीय क्षेत्रफल = बेलन का वक्रपृष्ठ + आधार का क्षेत्रफल + शंकु का वक्रपृष्ठ
= (3.36π + 0.49π + 1.75π) cm2
= 5.60π cm2
= 5.6 ×  cm2
= 17.6 cm2
अतः शेष बचे ठोस का पृष्ठीय क्षेत्रफल = 17.6 cm2

प्रश्न 9. लकड़ी के एक ठोस बेलन के प्रत्येक सिरे पर एक अर्द्धगोला व खोदकर निकालते हुए, एक वस्तु बनाई गई है, जैसा कि आकृति में दर्शाया गया है। यदि बेलन की ऊँचाई 10 cm है और आधार की त्रिज्या 3.5 cm है तो इस वस्तु का सम्पूर्ण पृष्ठीय क्षेत्रफल ज्ञात कीजिए।

हल:

दिया है, लकड़ी की वस्तु एक बेलन और दो अर्द्धगोलों के संयोजन से बनी है।
यहाँ, बेलन की ऊँचाई (h) = 10 cm
बेलन के आधार की त्रिज्या (r) = अर्द्धगोले की त्रिज्या = 3.5 cm
लकड़ी की वस्तु का सम्पूर्ण पृष्ठीय क्षेत्रफल = बेलन का वक्र पृष्ठीय क्षेत्रफल + दोनों अर्द्धगोलों का वक्र पृष्ठीय क्षेत्रफल
= 2πrh + 4πr2
= 2πr(h + 2r)
= 2 ×  × 3.5 (10 + 2 × 3.5)
=  × 7 × (17)
= 374 cm2
अत: वस्तु का सम्पूर्ण पृष्ठीय क्षेत्रफल = 374 cm2

प्रश्नावली 13.2

(जब तक अन्यथा न कहा जाए, π = \frac { 22 }{ 7 }लीजिए|)

प्रश्न 1. एक ठोस एक अर्द्धगोले पर खड़े एक शंकु के आकार का है जिनकी त्रिज्याएँ 1 cm हैं तथा शंक की ऊँचाई उसकी त्रिज्या के बराबर है। इस ठोस का आयतन π के पदों में ज्ञात कीजिए।
हल:

प्रश्न 2. एक इंजीनियरिंग के विद्यार्थी रचेल से एक पतली एल्यूमीनियम की शीट का प्रयोग करते हुए एक मॉडल बनाने को कहा गया जो एक ऐसे बेलन के आकार का हो जिसके दोनों सिरों पर दो शंकु जुड़े हुए हों। इस मॉडल का व्यास 3 cm है और इसकी लम्बाई 12 cm है। यदि प्रत्येक शंकु की ऊँचाई 2 cm हो तो रचेल द्वारा बनाए गए मॉडल में अन्तर्विष्ट हवा का आयतन ज्ञात कीजिए। (यह मान लीजिए कि मॉडल की आन्तरिक और बाहरी विमाएँ लगभग बराबर हैं)
हल:


दिया है, मॉडल एक बेलन व दो शंकुओं के संयोजन से बना है।
मॉडल का व्यास = 3 cm

प्रश्न 3. संलग्न चित्र में एक गुलाबजामुन में उसके आयतन की लगभग 30% चीनी की चाशनी होती है। 45 गुलाबजामुनों में लगभग कितनी चाशनी होगी, यदि प्रत्येक गुलाबजामुन एक बेलन के आकार का है, जिसके दोनों सिरे अर्द्धगोलाकार हैं तथा इसकी लम्बाई 5 cm और व्यास 2.8 cm है।

हल:


दिया है, एक गुलाबजामुन एक बेलन व दो अर्द्ध गोलों के संयोजन से बनी है।
गुलाबजामुन की सम्पूर्ण लम्बाई = 5 cm
तथा गुलाबजामुन का व्यास = 2.8 cm

1 गुलाबजामुन का आयतन = दोनों अर्द्धगोलाकार भागों का आयतन + बेलनाकार भाग का आयतन
= (11.499 + 13.552) cm3
= 25.051 cm3
45 गुलाबजामुनों का आयतन = 45 × 25.051 = 1127.295 cm3
45 गुलाबजामुनों में चाशनी का आयतन = 45 गुलाब जामुनों के आयतन का 30%
= 1127.295 का 30%

= 338.1885
≅ 338 cm3
अत: 45 गुलाबजामुनों में चाशनी का आयतन = 338 cm3

प्रश्न 4. संलग्न चित्र में एक कलमदान घनाभ के आकार की एक लकड़ी से बना है जिसमें कलम रखने के लिए चार शंक्वाकार गड्ढे बने हुए हैं। घनाभ की विमाएँ 15 cm × 10 cm × 3.5 cm हैं। प्रत्येक गड्ढे की त्रिज्या 0.5 cm है और गहराई 1.4 cm है। पूरे कलमदान में लकड़ी का आयतन ज्ञात कीजिए।

हल:

दिया है, घनाभ की लम्बाई (l) = 15 cm
घनाभ की चौड़ाई (b) = 10 cm
घनाभ की ऊँचाई (h) = 3.5 cm
घनाभ का आयतन = 15 cm × 10 cm × 3.5 cm = 525 cm3
शंक्वाकार गड्ढे की त्रिज्या (r) = 0.5 cm
तथा शंक्वाकार गड्ढे की गहराई (h) = 1.4 cm

कलमदान में लगी लकड़ी का आयतन = घनाभ का आयतन – 4 गड्ढों का आयतन
= (525 – 1.467) cm3
= 523.533 cm3
अत: पूरे कलमदान में लकड़ी का आयतन = 523.533 cm3

प्रश्न 5. एक बर्तन एक उल्टे शंकु के आकार का है। इसकी ऊँचाई 8 cm है और इसके ऊपरी सिरे (जो खुला हुआ है) की त्रिज्या 5 cm है। यह ऊपर तक पानी से भरा हुआ है। जब इस बर्तन में सीसे की कुछ गोलियाँ जिनमें प्रत्येक 0.5 cm त्रिज्या वाला एक गोला है, डाली जाती हैं तो इसमें से भरे हुए पानी का एक-चौथाई भाग बाहर निकल जाता है। बर्तन में डाली गई सीसे की गोलियों की संख्या ज्ञात कीजिए।
हल:


शंक्वाकार बर्तन की त्रिज्या (r) = 5 cm
तथा शंक्वाकार बर्तन की ऊँचाई (h) = 8 cm


अत: बर्तन में डाली गई गोलियों की संख्या = 100

प्रश्न 6. ऊँचाई 220 cm और आधार व्यास 24 cm वाले एक बेलन, जिस पर ऊँचाई 60 cm और त्रिज्या 8 cm वाला एक अन्य बेलन आरोपित है, से लोहे का एक स्तम्भ बना है। इस स्तम्भ का द्रव्यमान ज्ञात कीजिए, जबकि दिया है 1 cm3 लोहे का द्रव्यमान लगभग 8g होता है। (π = 3.14 लीजिए)
हल:
यहाँ, दिया गया ठोस दो बेलनों के संयोजन से बना है।
एक बेलन का व्यास = 24 cm
पहले बेलन की त्रिज्या (r) = 12 cm
तथा पहले बेलन की ऊँचाई (h) = 220 cm
पहले बेलन का आयतन = πr2h
= π × (12)2 × 220
= 31680π cm3
दूसरे बेलन की त्रिज्या (R) = 8 cm तथा ऊँचाई (H) = 60 cm
दूसरे बेलन का आयतन = πR2H
= π × (8)2 × 60
= 3840π cm3
सम्पूर्ण स्तम्भ का आयतन = (31680π + 3840π) cm3
= 35520π
= 35520 × 3.14 cm3
= 111532.8 cm3
बेलनाकार स्तम्भ का द्रव्यमान = सम्पूर्ण स्तम्भ का आयतन × 1 cm3 लोहे का भार
= 111532.8 × 8g
= 892262.4 g

= 892.2624 kg
= 892.26 kg
अत: स्तम्भ का द्रव्यमान = 892.26 kg

प्रश्न 7. एक ठोस में, ऊँचाई 120 cm और त्रिज्या 60 cm वाला एक शंकु सम्मिलित है, जो 60 cm त्रिज्या वाले एक अर्द्धगोले पर आरोपित है। इस ठोस को पानी से भरे हुए एक लम्बवृत्तीय बेलन में इस प्रकार सीधा डाल दिया जाता है कि यह बेलन की तली को स्पर्श करे। यदि बेलन की त्रिज्या 60 cm है और ऊँचाई 180 cm है तो बेलन में शेष बचे पानी का आयतन ज्ञात कीजिए।
हल:


यहाँ, ठोस एक शंकु व एक अर्द्धगोले के संयोजन से बना है और इसे लम्बवृत्तीय बेलन में सीधा डाला गया है जो कि बेलन की तली को स्पर्श करता है।
बेलन की त्रिज्या (r) = 60 cm
तथा बेलन की ऊँचाई (H) = 180 cm
लम्बवृत्तीय बेलन में भरे पानी का आयतन = πr2h
= π × (60)2 × 180
= 648000π cm3
दिया है, शंकु की त्रिज्या (R) = 60 cm
तथा शंकु की ऊँचाई (H) = 120 cm

= 144000π cm3
शंकु और अर्द्धगोले से अध्यारोपित ठोस का आयतन = शंकु का आयतन + अर्द्धगोले का आयतन
= (144000 +144000) π cm3
= 288000 π cm3
ठोस द्वारा विस्थापित (हटाए गए) पानी का आयतन = शंकु तथा अर्द्धगोले से अध्यारोपित ठोस का आयतन = 288000π cm3
शेष बचे पानी का आयतन = (648000π – 288000π) cm3
= 360000π cm3

≅ 1.131 m3
अत: बेलन में शेष बचे पानी का आयतन ≅ 1.131 m3

प्रश्न 8. एक गोलाकार काँच के बर्तन की एक बेलन के आकार की गर्दन है जिसकी लम्बाई 8 cm और व्यास 2 cm है जबकि गोलाकार भाग का व्यास 8.5 cm है। इसमें भरे जा सकने वाली पानी की मात्रा मापकर, एक बच्चे ने यह ज्ञात किया कि इस बर्तन का आयतन 345 cm3 है। जाँच कीजिए कि उस बच्चे का उत्तर सही है या नहीं, यह मानते हुए कि उपर्युक्त मापन आन्तरिक मापन है और π = 3.14
हल:


गोलाकार भाग का आयतन
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.2 Q8.1
बर्तन का आयतन = गोलाकार भाग का आयतन + बेलनाकार भाग का आयतन

अतः बच्चे का उत्तर 345 cm3 सही नहीं है।
अतः बर्तन का सही आयतन = 346.51 cm3

प्रश्नावली 13.3

(जब तक अन्यथा न कहा जाए, π = \frac { 22 }{ 7 } लीजिए |)

प्रश्न 1. त्रिज्या 4.2 cm वाले धातु के एक गोले को पिघलाकर त्रिज्या 6 cm वाले एक बेलन के रूप में ढाला जाता है। बेलन की ऊँचाई ज्ञात कीजिए।
हल:
गोले की त्रिज्या (R) = 4.2 cm
गोले का आयतन = 4/3 πR3
4/3 π(4.2)3
4/3 π × 4.2 × 4.2 × 4.2
= 98.784π cm3
माना बेलन की ऊँचाई h cm है।
बेलन की त्रिज्या (r) = 6 cm
(दिया है) बेलन का आयतन = πr2h = π × (6)2 × h = 36πh cm3
चूँकि गोले को पिघलाकर एक बेलन बनाया जाता है, इसलिए बेलन का आयतन, इस प्रकार बने गोले के आयतन के बराबर होगा।
बेलन का आयतन = गोले का आयतन
36πh = 98.784π

अतः बेलन की ऊँचाई = 2.744 cm (लगभग)।

प्रश्न 2. क्रमश: 6 cm, 8 cm और 10 cm त्रिज्याओं वाले धातु के तीन ठोस गोलों को पिघलाकर एक बड़ा ठोस गोला बनाया जाता है। इस गोले की त्रिज्या ज्ञात कीजिए।
हल: माना तीन ठोस गोलों की त्रिज्याएँ
r1 = 6 cm, r2 = 8 cm व r3 = 10 cm हैं।

तीनों गोलों को पिघलाकर एक बड़ा गोला बनाया जाता है।
बड़े गोले का आयतन = तीनों गोलों का कुल आयतन = 2304π cm3
माना बड़े गोले की त्रिज्या R है।
तब, बड़े गोले का आयतन = 4/3 πR3
4/3 πR3 = 2304π
⇒ R3 = 2304×3/4 = 1728
⇒ R3 = (12)3
⇒ R = 12
अत: बड़े गोले की त्रिज्या 12 cm है।

प्रश्न 3. व्यास 7 m वाला 20 m गहरा एक कुँआ खोदा जाता है और खोदने से निकली हुई मिट्टी को समान रूप से फैलाकर 22 m × 14 m वाला एक चबूतरा बनाया गया है। इस चबूतरे की ऊँचाई ज्ञात कीजिए।
हल:
दिया है, कुएँ का व्यास = 7 m

प्रश्न 4. व्यास 3 m का एक कुआँ 14 m की गहराई तक खोदा जाता है। इससे निकली हुई मिट्टी को कुएँ के चारों ओर 4 m चौड़ी एक वृत्ताकार वलय (ring) बनाते हुए, समान रूप से फैलाकर एक प्रकार का बाँध बनाया जाता है। इस बाँध की ऊँचाई ज्ञात कीजिए।
हल:
दिया है, कुएँ का व्यास = 3 m

प्रश्न 5. व्यास 12 cm और ऊँचाई 15 cm वाले एक लम्बवृत्तीय बेलन के आकार का बर्तन आइसक्रीम से पूरा भरा हुआ है। इस आइसक्रीम को ऊँचाई 12 cm और व्यास 6 cm वाले शंकुओं में भरा जाना है, जिनका ऊपरी सिरा अर्द्धगोलाकार होगा। उन शंकुओं की संख्या ज्ञात कीजिए जो इस आइसक्रीम से भरे जा सकते हैं।
हल:
दिया है, बेलनाकार बर्तन का व्यास = 12 cm
बेलनाकार बर्तन की त्रिज्या (r) = 6 cm तथा बर्तन की ऊँचाई (h) = 15 cm
तब, बेलनाकार बर्तन का आयतन = πr2h = π × (6)2 × 15 = 540π cm3
आइसक्रीम का कुल आयतन = बेलनाकार वर्तन का आयतन = 540π cm3

प्रश्न 6. विमाओं 5.5 cm × 10 cm × 3.5 cm वाला एक घनाभ बनाने के लिए 1.75 cm व्यास और 2 mm मोटाई वाले कितने चाँदी के सिक्कों को पिघलाना पडेगा?
हल:
माना चाँदी के n सिक्के पिघलाने पड़ेंगे।
प्रत्येक सिक्के का व्यास = 1.75 cm

प्रश्न 7. 32 cm ऊँची और आधार त्रिज्या 18 cm वाली एक बेलनाकार बाल्टी रेत से भरी हुई है। इस बाल्टी को भूमि पर खाली किया जाता है और इस रेत की एक शंक्वाकार ढेरी बनाई जाती है। यदि शंक्वाकार ढेरी की ऊँचाई 24 cm है तो इस ढेरी की त्रिज्या और तिर्यक ऊँचाई ज्ञात कीजिए।
हल:
दिया है, बेलनाकार बाल्टी के आधार की त्रिज्या (r) = 18 cm
तथा बाल्टी की ऊँचाई (h) = 32 cm
बाल्टी रेत से भरी हुई है।
रेत का आयतन = बेलनाकार बाल्टी का आयतन = πr2h
= π × 18 × 18 × 32 cm3
= 10368π cm3
इस रेत से एक शंक्वाकार ढेरी बनाई जाती है जिसकी ऊँचाई (H) = 24 cm है।
माना शंक्वाकार ढेरी की त्रिज्या R cm है।

अत: ढेरी की त्रिज्या = 36 cm
तथा तिर्यक ऊँचाई = 12√13 cm या 43.27 cm (लगभग)।

प्रश्न 8. 6 m चौड़ी और 1.5 m गहरी एक नहर में पानी 10 km/h की चाल से बह रहा है। 30 मिनट में, यह नहर कितने क्षेत्रफल की सिंचाई कर पाएगी, जबकि सिंचाई के लिए 8 cm गहरे पानी की आवश्यकता होती है?
हल:
नहर में पानी की चाल = 10 km/h

प्रश्न 9. एक किसान अपने खेत में बनी 10 m व्यास वाली और 2 m गहरी एक बेलनाकार टंकी को, आन्तरिक व्यास 20 cm वाले एक पाइप द्वारा एक नहर से जोड़ता है। यदि पाइप में पानी 3 km/h की चाल से बह रहा है तो कितने समय बाद टंकी परी भर जाएगी?
हल:
दिया है, टंकी का व्यास = 10 m
टंकी की त्रिज्या (r) = 5 m
टंकी की गहराई (h) = 2 m
बेलनाकार टंकी का आयतन = πr2h = π × (5)2 × 2 = 50π m3
पाइप का व्यास = 20 cm
पाइप की त्रिज्या (R) = 10 cm = 10/100 m = 1/10 m
पाइप में पानी की चाल = 3 km/h
3×1000/60 m/min
= 50 m/min
तब, पाइप टंकी में 1/10 m त्रिज्या और 50 m लम्बाई के बेलन के आयतन के बराबर पानी प्रति मिनट स्थानान्तरित करेगा।
यदि टंकी को भरने में n मिनट का समय लगता हो, तो
n मिनट में स्थानान्तरित पानी का आयतन = बेलनाकार टंकी का आयतन

अतः टंकी 100 मिनट में पूरी भर जाएगी।

प्रश्नावली 13.4

(जब तक अन्यथा न कहा जाए, π = \frac { 22 }{ 7 }लीजिए|)

प्रश्न 1. पानी पीने वाला एक गिलास 14 cm ऊँचाई वाले एक शंकु के छिन्नक के आकार का है। दोनों वृत्ताकार सिरों के व्यास 4 cm और 2 cm हैं। इस गिलास की धारिता ज्ञात कीजिए।
हल:

दिया है, शंकु के छिन्नक के व्यास क्रमश: 4 cm व 2 cm हैं।
त्रिज्या (r1) = 2 cm तथा त्रिज्या (r2) = 1 cm
गिलास की ऊँचाई (h) = 14 cm
शंकु के छिन्नक के आकार के गिलास का आयतन

प्रश्न 2. एक शंकु के छिन्नक की तिर्यक ऊँचाई 4 cm है तथा इसके वृत्तीय सिरों के परिमाप (परिधियाँ) 18 cm और 6 cm हैं। इस छिन्नक का व्रक पृष्ठीय क्षेत्रफल ज्ञात कीजिए।
हल:
दिया है, शंकु के छिन्नक की तिर्यक ऊँचाई (l) = 4 cm
एक सिरे की वृत्तीय परिधि, 2πr1 = 18 cm ⇒ πr1 = 9 cm
दूसरे सिरे की वृत्तीय परिधि, 2πr2 = 6 cm ⇒ πr2 = 3 cm
छिन्नक का वक्र पृष्ठीय क्षेत्रफल = π(r1 + r2)l
= (πr1 + πr2)l
= (9 + 3) × 4
= 48 cm2
अतः छिन्नक का वक्र पृष्ठीय क्षेत्रफल = 48 cm2

प्रश्न 3. एक तुर्की टोपी शंकु के छिन्नक के आकार की है (चित्र देखिए)। यदि इसके खुले सिरे की त्रिज्या 10 cm है, ऊपरी सिरे की त्रिज्या 4 cm है और टोपी की तिर्यक ऊँचाई 15 cm है, तो इसके बनाने में प्रयुक्त पदार्थ का क्षेत्रफल ज्ञात कीजिए।

हल:
दिया है, टोपी शंकु के छिन्नक के आकार की है जिसकी तिर्यक ऊँचाई (l) = 15 cm,
त्रिज्या (r1) = 10 cm तथा त्रिज्या (r2) = 4 cm
टोपी का वक्रपृष्ठ = π(r1 + r2)l

प्रश्न 4. धातु की चादर से बना और ऊपर से खुला एक बर्तन शंकु के एक छिन्नक के आकार का है, जिसकी ऊँचाई 16 cm है तथा निचले और ऊपरी सिरों की त्रिज्याएँ क्रमश 8 cm और 20 cm हैं। ₹ 20 प्रति लीटर की दर से, इस बर्तन को पूरा भर सकने वाले दूध का मूल्य ज्ञात कीजिए। साथ ही, इस बर्तन को बनाने के लिए प्रयुक्त धातु की चादर का मूल्य ₹ 8 प्रति 100 cm2 की दर से ज्ञात कीजिए। (π = 3.14 लीजिए)
हल:
दिया है, बर्तन शंकु के छिन्नक के आकार का है जिसकी ऊँचाई (h) =16 cm
और शंकु के ऊपरी सिरे की त्रिज्या (r1) = 20 cm तथा शंकु के निचले सिरे की त्रिज्या (r2) = 8 cm
तब, बर्तन का आयतन = छिन्नक का आयतन

= 3328 × 3.14
= 10449.92 cm3
बर्तन को दूध से भरने के लिए 10449.92 cm3 अथवा 10.450 लीटर दूध चाहिए।
तब, ₹ 20 प्रति लीटर की दर से दूध का मूल्य = 20 × 10.45 = ₹ 209
बर्तन को बनाने में वक्रपृष्ठ एवं आधार पर चादर प्रयुक्त होगी,

= 20 cm
तब, बर्तन का वक्रपृष्ठ = π(r1 + r2)l
= 3.14(20 + 8) × 20
= 3.14 × 28 × 20
= 1758.4 cm3
बर्तन में प्रयुक्त चादर का क्षेत्रफल = (1758.4 + 200.96) cm2 = 1959.36 cm2
अतः ₹ 8 प्रति 100 cm2 की दर से चादर का मूल्य = 8/100 × 1959.36
= ₹ 156.7488
= ₹ 156.75
अत: दूध का मूल्य = ₹ 209 तथा चादर का मूल्य = ₹ 156.75

प्रश्न 5. 20 cm ऊँचाई और शीर्ष कोण (vertical angle ) 60o एक शंकु को उसकी ऊँचाई के बीचोंबीच से होकर जाते हुए एक ताल से दो भागों में काटा गया है, जबकि ताल शंकु के आधार के समांतर है| यदि इस प्राप्त शंकु के छिन्नक को व्यास \frac { 1 }{ 16 } cm वाले एक तार के रूप में बदल दिया जाता है तो की लंबाई ज्ञात कीजिए|
हल:

चित्र में किसी शंकु के आधार का व्यास A’OA है तथा शीर्ष V है।
शंकु का शीर्ष कोण A’VA = 60° है, तब शंकु का अर्द्धशीर्ष कोण (α) = 30°
शंकु की ऊँचाई = 20 cm है।
तब, समकोण ΔOAV में,

प्रश्नावली 13.5

प्रश्न 1. व्यास 3 mm वाले ताँबे के तार को 12 cm लम्बे और 10 cm व्यास वाले एक बेलन पर इस प्रकार लपेटा जाता है कि वह बेलन के व्रक पृष्ठ को पूर्णतया ढक लेता है। तार की लम्बाई और द्रव्यमान ज्ञात कीजिए, यह मानते हुए कि ताँबे का द्रव्यमान 8.88 g/cm3 हैं।
हल:
बेलन का व्यास = 10 cm तथा बेलन की ऊँचाई = 12 cm
बेलन की परिधि = π × व्यास = π × 10 = 10π cm
बेलन पर 1 चक्कर लपेटने के लिए तार की लम्बाई = 10π cm
जब बेलन पर तार का 1 चक्कर लपेटते हैं तो उसकी 3 mm लम्बाई ढक जाती है।
जब बेलन पर तार के 2 चक्कर लपेटते हैं तो उसकी (2 × 3) mm लम्बाई ढक जाती है।
जब बेलन पर तार के 3 चक्कर लपेटते हैं तो उसकी (3 × 3) mm लम्बाई ढक जाती है।
जब बेलन पर तार के 4 चक्कर लपेटते हैं तो उसकी (4 × 3) mm लम्बाई ढक जाती है।
तब, सम्पूर्ण बेलन को ढकने के लिए तार के 120/3 = 40 चक्कर लपेटने होंगे।
40 चक्कर बेलन पर लपेटने के लिए आवश्यक तार की माप
= 40 × 10π
= 400π cm
= 400 × 3.14 cm
= 1256 cm
= 12.56 m (लगभग)
अत: तार की अभीष्ट लम्बाई = 12.56 m
तथा तार का द्रव्यमान = 1256 × 8.88 g
= 11153.3 g
= 11.153 kg

प्रश्न 2. एक समकोण त्रिभुज, जिसकी भुजाएँ 3 cm और 4 cm हैं (कर्ण के अतिरिक्त), को उसके कर्ण के परितः घुमाया जाता है। इस प्रकार प्राप्त द्वि-शंकु (double cone) के आयतन और पृष्ठीय क्षेत्रफल ज्ञात कीजिए। (r का मान जो भी उपयुक्त लगे, प्रयोग कीजिए।)
हल:

अतः समकोण ∆ABC के परिक्रमण से बने द्वि-शंकु की त्रिज्या (r) = 2.4 cm
तब, द्वि-शंकु (दोनों शंकुओं) का आयतन = शंकु (ABB’) का आयतन + शंकु (CBB’) का आयतन

= 9.6π
= 9.6 × 3.14
= 30.144 cm3
और द्वि-शंकु (दोनों शंकुओं) का पृष्ठीय क्षेत्रफल = शंकु (ABB’) का वक्रपृष्ठ + शंकु (CBB’) का वक्र पृष्ठ
= πr(AB) + πr(BC)
= πr(AB + BC)
= 3.14 × 2.4 × (4 + 3)
= 3.14 × 2.4 × 7
= 52.75 cm2
अतः द्वि-शंकु का आयतन = 30.144 cm3
तथा पृष्ठीय क्षेत्रफल = 52.75 cm2 (लगभग)।

प्रश्न 3. एक टंकी, जिसके आंतरिक मापन 150 cm x 120 cm x 110 cm हैं, में 129600 cm3 पानी में कुछ छिद्र वाली ईंटे तब तक डाली जाती हैं, जब तक कि ताकि पूरी ऊपर तक भर न जाए | प्रत्येक ईंट अपने आयतन का \frac { 1 }{ 17 } पानी सोख लेती है| यदि प्रत्येक ईंट की माप 22.5 cm x 7.5 cm x 6.5 cm हैं, तो टंकी में कुल कितनी ईंटे डाली जा सकती हैं, ताकि उसमें से पानी बाहर न बहे ?
हल:
टंकी का आयतन = 150 × 120 × 110 cm3 = 1980000 cm3
टंकी में भरे पानी का आयतन = 129600 cm3
प्रत्येक ईंट का आयतन = 22.5 × 7.5 × 6.5 cm3 = 1096.875 cm3
माना टंकी में x ईंटें डालने पर टंकी पानी से ऊपर तक भर जाएगी।
तब, x ईंटों का आयतन = 1096.875x cm3

प्रश्न 4. किसी महीने के 15 दिनों में, एक नदी की घाटी में 10 cm वर्षा हुई। यदि इस घाटी का क्षेत्रफल 97280 km2 है तो दर्शाइए कि कल वर्षा लगभग तीन नदियों के सामान्य पानी के योग के समतुल्य थी, जबकि प्रत्येक नदी 1072 km लम्बी, 75 m चौड़ी और 3 m गहरी है।
हल:
प्रत्येक नदी का आयतन = 1072 km × 75 m × 3 m
= 1072 × 75 × 3 × 1000 m3
= 241200000 m3
तीनों नदियों के कुल पानी का आयतन = 3 × 241200000 m3
नदियों का कुल पानी = 723600000 m3
घाटी का क्षेत्रफल = 97280 km2
= 97280 × (1000)2 m2
= 97280000000 m2
वर्षा के पानी का आयतन = 97280000000 × 10/100 m3 (∵ 10 cm = 10/100 m)
= 9728000000 m3
ये दोनों आयतन बराबर होने चाहिए लेकिन ये बराबर नहीं हैं।
इससे स्पष्ट है कि प्रश्न में दिए तथ्य असंगत हैं।

प्रश्न 5. टीन की बनी हुई एक तेल की कुप्पी 10 cm लम्बे एक बेलन में एक शंकु के छिन्नक को जोड़ने से बनी है। यदि इसकी कुल ऊँचाई 22 cm है, बेलनाकार भाग का व्यास 8 cm है और कुप्पी के ऊपरी सिरे का व्यास 18 cm है, तो इसके बनाने में लगी टीन की चादर का क्षेत्रफल ज्ञात कीजिए।

हल:
दिया है, बेलनाकार भाग की ऊँचाई (h) = 10 cm
कुप्पी की कुल ऊँचाई = 22 cm
शंकु के छिन्नक की ऊँचाई (H) = 22 – 10 = 12 cm

बेलनाकार भाग की त्रिज्या (r) = 4 cm
बेलनाकार भाग का वक्रपृष्ठ = 2πrh
= 2π × 4 × 10
= 80π cm2
शंकु के छिन्नक की तिर्यक ऊँचाई
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.5 Q5.1
शंकु के छिन्नक का वक्र पृष्ठ = π(R1 + R2)l
= π(9 + 4) × 13
= 169π cm2
अतः कुप्पी का कुल पृष्ठीय क्षेत्रफल = बेलनाकार भाग का वक्र पृष्ठ + शंकु छिन्नक का वक्र पृष्ठ
= 80π + 169π
= 249π cm2

प्रश्न 6. शंकु के एक छिन्नक के लिए, पूर्व स्पष्ट किए संकेतों का प्रयोग करते हुए, वक्र पृष्ठीय क्षेत्रफल और सम्पूर्ण पृष्ठीय क्षेत्रफल के सूत्रों को सिद्ध कीजिए।
हल:

माना एक शंकु (VAB) का शीर्ष V, आधार की त्रिज्या r2 और तिर्यक ऊँचाई l2 है। इस शंकु के शीर्ष V से h1 नीचे स्थित बिन्दु O’ से आधार के समान्तर एक शंकु (VCD) काटा गया है जिसकी त्रिज्या r1 तथा तिर्यक ऊँचाई l1 है।
बिन्दु D से आधार पर लम्ब DE खींचा।
ΔVOD तथा ΔDOB में,
∠VO’D = ∠DEB [∵ VO ⊥ AB और VO’ ⊥ CD]
∠VDO’ = ∠DBE [संगत कोण]
ΔVOD और ΔDEB समरूप हैं।

छिन्नक का वक्र पृष्ठीय क्षेत्रफल = शंकु (VAB) का वक्र पृष्ठ – शंकु (VCD) का वक्र पृष्ठ
= πr2l2 – πr1l1
= πr2(l1 + BD) – πr1l1
= πr2l1 + πr2 (BD) – πr1l1
= π(r2 – l1) l1 + πr2l (जहाँ BD = l = छिन्नक की तिर्यक ऊँचाई है।)

= πr1l + πr2l
अत: छिन्नक का वक्र पृष्ठीय क्षेत्रफल = π(r1 + r2)l
इति सिद्धम्
और छिन्नक का सम्पूर्ण पृष्ठ = वक्र पृष्ठ + पहले सिरे का क्षेत्रफल + दूसरे सिरे का क्षेत्रफल

प्रश्न 7. शंकु के एक छिन्नक के लिए, स्पष्ट संकेतों का प्रयोग करते हुए, आयतन का सूत्र सिद्ध कीजिए।
हल: पिछले प्रश्न से, शंकु (VAB) की ऊँचाई h2 तथा त्रिज्या r2 है।

पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

बहुविकल्पीय प्रश्न

प्रश्न 1.
एक किनारे पर नुकीली बनायी गयी एक बेलनाकार पेंसिल निम्नलिखित का संयोजन है
(i) एक शंकु और एक बेलन
(ii) शंकु का छिन्नक और एक बेलन
(iii) एक अर्धगोला और एक बेलन
(iv) दो बेलन
हल
(i) एक शंकु और एक बेलन

प्रश्न 2.
एक सुराही निम्नलिखित का संयोजन है
(i) एक गोला और एक बेलन
(ii) एक अर्द्धगोला और एक बेलन
(iii) दो अर्द्धगोले
(iv) एक बेलन और एक शंकु
हल
(i) एक गोला और एक बेलन

प्रश्न 3.
एक साहुल निम्नलिखित का संयोजन है (आकृति देखिए)

(i) एक शंकु और एक बेलन
(ii) एक अर्द्धगोला और एक शंकु
(iii) शंकु का छिन्नक और एक बेलन
(iv) गोला और बेलन
हल
(ii) एक अर्द्धगोला और एक शंकु

प्रश्न 4.
संलग्न चित्र में, एक गिलास का आकार प्रायः निम्न रूप से होता है

(i) एक शंकु
(ii) शंकु का छिन्नक
(iii) एक बेलन
(iv) एक गोला
हल
(ii) शंकु का छिन्नक

प्रश्न 5.
संलग्न चित्र में, गिल्ली-डंडे के खेल में, गिल्ली का आकार निम्नलिखित का संयोजन है

(i) दो बेलन
(ii) एक शंकु और एक बेलन
(iii) दो शंकु और एक बेलन
(iv) दो बेलन और एक शंकु
हल
(iii) दो शंकु और एक बेलन

प्रश्न 6.
बैडमिंटन खेलने में प्रयोग की जाने की जाने वाली शटलकॉक (चिड़िया) का आकार निम्नलिखित का संयोजन है
(i) एक बेलन और एक गोला
(ii) एक बेलन और एक अर्द्धगोला
(iii) एक गोला और एक शंकु
(iv) शंकु का छिन्नक और अर्द्धगोला
हल
(iv) शंकु का छिन्नक और अर्द्धगोला

प्रश्न 7.
एक शंकु को उसके आधार के समांतर एक तल की सहायता से काटा जाता है और फिर तल के एक ओर बने शंकु को हटा दिया जाता है। तल के दूसरी ओर बचा हुआ नया भाग कहलाता है एक
(i) शंकु का छिन्नक
(ii) शंकु
(iii) बेलन
(iv) गोला
हल
(i) शंकु का छिन्नक

प्रश्न 8.
विमाओं 49 cm × 33 cm × 24 cm के घनाभ के आकार के लोहे के किसी ठोस टुकड़े को पिघलाकर एक ठोस गोले के रूप में ढाला जाता है। गोले की त्रिज्या है
(i) 21 cm
(ii) 23 cm
(iii) 25 cm
(iv) 19 cm
हल
(i) 21 cm

प्रश्न 9.
त्रिज्या r सेमी और ऊँचाई h सेमी (h > 2r) वाले एक लम्बवृत्तीय बेलन में ठीक समावेशित होने वाले गोले का व्यास
(i) r cm
(ii) 2r cm
(iii) h cm
(iv) 2h cm
हल
(ii) 2r cm

प्रश्न 10.
लम्बवृत्तीय शंकु में, आधार के समांतर खींचे गए तल द्वारा काटे गए अनुप्रस्थ परिच्छेद को कहते हैं
(i) वृत्त
(ii) शंकु का छिन्नक
(iii) गोला
(iv) अर्धगोला
हल
(i) वृत्त

प्रश्न 11.
दो गोलों के आयतनों का अनुपात 64 : 27 है। उनके वक्र पृष्ठीय क्षेत्रफलों का अनुपात है
(i) 3 : 4
(ii) 4 : 3
(iii) 9 : 16
(iv) 16 : 9
हल
(iv) 16 : 9

प्रश्न 12.
एक ठोस को एक आकृति से दूसरी आकृति में रूपान्तरित करने पर नई आकृति का आयतन
(i) बढ़ेगा
(ii) घटेगा
(iii) पहले के समान
(iv) दो गुना
हल
(iii) पहले के समान

प्रश्न 13.
यदि समान त्रिज्या r के दो अर्द्धगोलों को उनके आधारों से जोड़ा जाता है, तब नए ठोस का वक्र पृष्ठीय क्षेत्रफल है
(i) 4πr2
(ii) 6πr2
(iii) 3πr2
(iv) 8πr2
हल
(i) 4πr2

प्रश्न 14.
यदि 10 cm कोर के घनाकार लकड़ी के टुकड़े से काटकर अधिकतम आयतन का एक शंकु बनाया गया तो शंकु का आयतन होगा
(i) 260 cm3
(ii) 260.9 cm3
(iii) 261.9 cm3
(iv) 262.7 cm3
हल
(iii) 261.9 cm3

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
एक 22 cm लम्बे और 18 cm चौड़े दफ्ती के टुकड़े को मोड़कर 18 cm ऊँचा एक बेलन बनाया गया है। इस प्रकार बने हुए बेलन का आयतन ज्ञात कीजिए।
हल
दफ्ती के टुकड़े की माप 22 cm × 18 cm
इसे मोड़कर 18 cm ऊँचा बेलन बनाया गया है।
अतः आधार की परिधि = 22 cm
2πr = 22

प्रश्न 2.
एक धातु के ठोस गोले की त्रिज्या 10 cm है। उसको पिघलाकर 2 cm त्रिज्या की गोलियाँ बनाई गई हैं। इस प्रकार की गोलियों की संख्या ज्ञात कीजिए।
हल
ठोस गोले की त्रिज्या (R) = 10 cm
छोटी गोली की त्रिज्या (r) = 2 cm
गोले को पिघलाकर बनी गोलियों की संख्या

प्रश्न 3.
6 cm त्रिज्या का एक ठोस गोला पिघलाकर उसी त्रिज्या के वृत्ताकार आधार का एक ठोस लम्ब बेलन तैयार किया जाता है। बेलन की ऊँचाई ज्ञात कीजिए।
हल
माना बेलन की ऊँचाई h है।
प्रश्नानुसार, गोले का आयतन = बेलन का आयतन
4/3 πr3 = πr2h
4/3 π(6)3 = π × (6)2 × h [∵ त्रिज्या = 6 cm]
h = 4/3 × 6 = 8 cm
अतः बेलन की ऊँचाई 8 cm है।

प्रश्न 4.
एक शंकु तथा एक बेलन के आधार तथा ऊँचाइयाँ समान हैं। उनके आयतनों का अनुपात ज्ञात कीजिए।
हल
माना शंकु व बेलन में प्रत्येक के आधार की त्रिज्या r cm तथा प्रत्येक की ऊँचाइयाँ h cm हैं।
तब, शंकु का आयतन = 1/3 πr2h तथा बेलन का आयतन = πr2h
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions VSAQ 4
अतः शंकु का आयतन : बेलन का आयतन = 1 : 3

लघु उत्तरीय प्रश्न

प्रश्न 1.
7.0 cm कोर वाले लकड़ी के घन से अधिकतम आयतन का लम्बवृत्तीय बेलन बनाया जाता है। बेलन का आयतन ज्ञात कीजिए।
हल
अधिकतम आयतन वाले बेलन के आधार का व्यास = घन की कोर = 7 cm

प्रश्न 2.
3 cm कोर के एक घन में 1.4 cm व्यास का एक छेद किया गया है। छेद का आयतन ज्ञात कीजिए।
हल

प्रश्न 3.
π घन dm3 ताँबे को गलाकर एक km लम्बा (बेलनाकार) तार बनाया गया है। तार की त्रिज्या व व्यास ज्ञात कीजिए।
हल

प्रश्न 4.
एक लम्बवृत्तीय शंकु और एक लम्बवृत्तीय बेलन के आधार की त्रिज्याएँ समान हैं। यदि उनके आयतनों का अनुपात 2 : 3 है, तो उनकी ऊँचाइयों में अनुपात ज्ञात कीजिए।
हल
माना शंकु और बेलन की त्रिज्या = r तथा उनकी ऊँचाइयाँ क्रमश: h1 व h2 हैं।

प्रश्न 5.
एक लम्बवृत्तीय बेलन और लम्बवृत्तीय शंकु के आधार और ऊँचाइयाँ समान हैं। यदि उनके वक्रपृष्ठ 8 : 5 के अनुपात में हों, तो दिखाइए कि उनके आधार की त्रिज्या और ऊँचाई में 3 : 4 का अनुपात है।
हल
माना त्रिज्याएँ r व ऊँचाई h हैं।
तब बेलन का वक्रपृष्ठ = 2πrh

प्रश्न 6.
एक ठोस बेलन, जिसकी त्रिज्या 3 cm और ऊँचाई 5 cm है, के एक सिरे पर एक ठोस शंकु जिसके आधार की त्रिज्या 3 cm और ऊँचाई 4 cm है, रखकर एक ठोस बनाया गया है। इस प्रकार बने ठोस का आयतन ज्ञात कीजिए।
हल
बेलनाकार भाग की त्रिज्या (r1) = 3 cm, ऊँचाई (h1) = 5 cm
शंक्वाकार भाग की त्रिज्या (r2) = 3 cm, ऊँचाई (h2) = 4 cm
ठोस का आयतन = बेलनाकार भाग का आयतन + शंक्वाकार भाग का आयतन
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 8

प्रश्न 7.
6.0 dm त्रिज्या और 2.0 dm ऊँचाई के एक ठोस बेलन को पिघलाया जाता है और उससे एक लम्बवृत्तीय शंकु, जिसकी ऊँचाई बेलन की ऊँचाई की तीन गुनी है, बनाया जाता है। शंकु का वक्रपृष्ठ ज्ञात कीजिए।
हल
बेलन की त्रिज्या r1 = 6.0 dm तथा ऊँचाई h1 = 2 dm
माना शंकु की त्रिज्या = r2
तथा शंकु की ऊँचाई (h2) = 3h1 = 3 × 2 = 6 dm
बेलन को पिघलाकर शंकु बनाया जाता है।
बेलन का आयतन = शंकु का आयतन

प्रश्न 8.
7 cm की भुजा वाले एक घन से एक बड़ा से बड़ा गोला काटकर निकाल लिया गया है। इस गोले का आयतन ज्ञात कीजिए (π = 3.14 लीजिए)।
हल
घन से काटे गये बड़े से बड़े गोले का व्यास घन की भुजा के बराबर होगा।
गोले का व्यास = घन की भुजा = 7 cm

प्रश्न 9.
12 cm की त्रिज्या के एक बेलनाकार टब में 20 cm ऊँचाई तक पानी भरा है। लोहे की एक गोलीय गेंद टब में डाली जाती है और इस प्रकार पानी का स्तर 6.75 cm ऊपर उठ जाता है। गेंद की त्रिज्या ज्ञात कीजिए।
हल
बेलन की त्रिज्या (r) = 12 cm
लोहे की गोलीय गेंद को टब में डालने पर,
पानी के तल में वृद्धि (h) = 6.75 cm
ऊपर उठे पानी का आयतन = πr2h = π × 12 × 12 × 6.75 cm3
माना लोहे की गोलीय गेंद की त्रिज्या R cm है, तो
गोलीय गेंद का आयतन = 4/3 πR3
गोलीय गेंद का आयतन = ऊपर उठे पानी का आयतन
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions SAQ 11
अतः गेंद की त्रिज्या = 9 cm

प्रश्न 10.
एक ही वृत्तीय आधार पर समान ऊँचाई के शंकु, अर्द्धगोला और बेलन के आयतन के अनुपात ज्ञात कीजिए।
हल
माना समान वृत्तीय आधार की त्रिज्या = r
अर्द्धगोले की ऊँचाई (h) = r
शंकु की ऊँचाई (h’) = r
बेलन की ऊँचाई (H) = r
शंकु का आयतन : अर्द्धगोले का आयतन : बेलन का आयतन

प्रश्न 11.
उस गोले की त्रिज्या ज्ञात कीजिए जो 6 cm, 8 cm और 10 cm की त्रिज्या के 3 गोलों को गलाकर बनाया जाता है।
हल
माना गोले की त्रिज्या = R
दिये गए तीन गोलों की त्रिज्या, r1 = 6 cm, r2 = 8 cm तथा r3 = 10 cm
गोला तीनों गोलों को गलाकर बनाया जाता है।
बड़े गोले का आयतन = तीनों छोटे गोलों का आयतन

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
एक ठोस लम्बवृत्तीय बेलन के दोनों सिरों में दो समान शंक्वाकार छेद बनाये गये हैं। बेलन की ऊँचाई 10 cm और आधार का व्यास 8 cm है।यदि छेद का व्यास 6 cm और गहराई 4 cm है तो शेष बचे ठोस का सम्पूर्ण पृष्ठ ज्ञात कीजिए।
हल

चित्र में शेष आकृति को प्रदर्शित किया गया है।
शंक्वाकार छेद का व्यास = 6 cm
शंक्वाकार छेद की त्रिज्या (r) = 3 cm
शंक्वाकार छेद की गहराई (h) = 4 cm

बेलन का आयतन = πR2H
= π × 4 × 4 × 10
= 160π cm3
शेष ठोस का आयतन = बेलन का आयतन – दोनों शंकुओं का आयतन
= (160π – 24π) cm3
= 136π cm3
शेष आकृति का सम्पूर्ण पृष्ठ = बेलन का वक्रपृष्ठ + दोनों शंकुओं का वक्रपृष्ठ + सिरों के छल्लों का क्षेत्रफल
= 2πRH + 2πrl + 2π(R2 – r2)
= 2 × π × 4 × 10 + 2 × π × 3 × 5 + 2π(42 – 32)
= 80π + 30π + 2π(16 – 9)
= 124π cm2
अत: शेष आकृति का सम्पूर्ण पृष्ठ 124π cm2 और आयतन 136π cm3 है।

प्रश्न 2.
एक केनवास के टेंट का शीर्ष ऊपर से शंक्वाकार तथा नीचे से लम्बवत्तीय बेलन के रूप का है। यदि आधार का व्यास 24 m और सम्पूर्ण ऊँचाई 15 m है तो टेंट में कितने m2 केनवास की आवश्यकता होगी, जबकि टेंट के बेलनाकार भाग की ऊँचाई 10 m है।
हल

शंक्वाकार भाग की ऊँचाई (h) = सम्पूर्ण ऊँचाई – बेलनाकार भाग की ऊँचाई
= 15 – 10
= 5 m
शंक्वाकार भाग की तिर्यक ऊँचाई
Bihar Board Class 10 Maths Solutions Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions LAQ 2.1
आवश्यक केनवास = टेंट का पृष्ठीय क्षेत्रफल = बेलनाकार भाग का पृष्ठीय क्षेत्रफल + शंक्वाकार भाग का पृष्ठीय क्षेत्रफल
= 2πrh’ + πrl
= πr(2h’ + l)
= π × 12(2 × 10 + 13)
= 12π × 33
= 396π m2

tense in english

Leave a Reply

Your email address will not be published. Required fields are marked *