11th Physics

Bihar Board Class 11th Physics Solutions Chapter 7 कणों के निकाय तथा घूर्णी गति

Bihar Board Class 11th Physics Solutions Chapter 7 कणों के निकाय तथा घूर्णी गति

Bihar Board Class 11th Physics कणों के निकाय तथा घूर्णी गति Text Book Questions and Answers

अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 1. एक समान द्रव्यमान घनत्व के निम्नलिखित पिंडों में प्रत्येक के द्रव्यमान केंद्र की अवस्थिति लिखिए:
(a) गोला
(b) सिलिंडर
(c) छल्ला तथा
(d) घन। क्या किसी पिंड का द्रव्यमान केंद्र आवश्यक रूप से उस पिंड के भीतर स्थित होता है?
उत्तर:
(a) गोला
(b) सिलिंडर
(c) छल्ला व
(d) घन, चारों का द्रव्यमान केन्द्र उनका ज्यामितीय केन्द्र होता है। नहीं, जहाँ कोई पदार्थ नहीं है। जैसे वलय, खोखले सिलिंडर व खोखले गोले में द्रव्यमान केन्द्र पिंड के बाहर भी हो सकता है।

प्रश्न 2. HCL अणु में दो परमाणुओं के नाभिकों के बीच पृथकन लगभग 1.27 Å (1Å = 10-10 m) है। इस अणु के द्रव्यमान केंद्र की लगभग अवस्थिति ज्ञात कीजिए।यह ज्ञात है कि क्लोरीन का परमाणु हाइड्रोजन के परमाणु की तुलना में 35.5 गुना भारी होता है तथा किसी परमाणु का समस्त द्रव्यमान उसके नाभिक पर केंद्रित होता है।
उत्तर:
माना द्रव्यमान केन्द्र H परमाणु से x दूरी पर है। माना हाइड्रोजन परमाणु का द्रव्यमान, m1 = m

प्रश्न 3. कोई बच्चा किसी चिकने क्षैतिज फर्श पर एकसमान चाल v से गतिमान किसी लंबी ट्राली के एक सिरे पर बैठा है। यदि बच्चा खड़ा होकर ट्राली पर किसी भी प्रकार से दौड़ने लगता है, तब निकाय (ट्राली + बच्चा) के द्रव्यमान केंद्र की चाल क्या है?
उत्तर:
प्रश्नानुसार, ट्राली एक चिकने क्षैतिज फर्श पर गति कर रही है। इसलिए फर्श के चिकना होने के कारण निकाय पर क्षैतिज दिशा में कोई बाह्य बल नहीं लगता है। परन्तु जब बच्चा दौड़ता है तब बच्चे द्वारा ट्राली पर व ट्राली द्वारा बच्चे पर लगाए गए दोनों ही बल आन्तरिक बल होते हैं।

प्रश्न 4. दर्शाइये कि a एवं b के बीच बने त्रिभुज का क्षेत्रफल a × b के परिमाण का आधा है।
उत्तर:

प्रश्न 5. दर्शाइये कि a (bx c) का परिमाण तीन सदिशों a, b एवं c से बने समान्तर षट्फलक के आयतन के बराबर है।
उत्तर:
माना OABCDEFG एक समान्तर षट्फलक है जिसकी भुजाएँ क्रमश: OA, OC व OE हैं।

प्रश्न 6. एक कण, जिसके स्थिति सदिश r के x, y, z अक्षों के अनुदिश अवयव क्रमशःx, y, हैं,और रेखीय संवेग सदिश P के अवयव px, Py, Pz हैं, के कोणीय संवेग 1 के अक्षों के अनुदिश अवयव ज्ञात कीजिए। दर्शाइये, कि यदि कण केवल x – y तल में ही गतिमान हो तो कोणीय संवेग का केवल z – अवयव ही होता है।
उत्तर:

प्रश्न 7. दो कण जिनमें से प्रत्येक का द्रव्यमान m एवं चाल v है d दूरी पर, समान्तर रेखाओं के अनुदिश, विपरीत दिशाओं में चल रहे हैं। दर्शाइये कि इस द्विकण निकाय का सदिश कोणीय संवेग समान रहता है, चाहे हम जिस बिन्दु के परितः कोणीय संवेग लें।
उत्तर:
माना दूरी पर दो समान्तर रेखाओं के अनुदिश गतिमान प्रत्येक कण का द्रव्यमान m है।
माना v प्रत्येक कण विपरीत दिशा में चाल है।
माना कि क्षण t व कण P1 व P2, बिन्दुओं O पर हैं। अब इन दोनों कणों द्वारा बनाए गए निकाय का किसी बिन्दु O के परितः

प्रश्न 8. W भार की एक असमांग छड़ को, उपेक्षणीय भार वाली दो डोरियों से चित्र में दर्शाये अनुसार लटका कर विरामावस्था में रखा गया है। डोरियों द्वारा ऊर्ध्वाधर से बने कोण क्रमशः 36.9° एवं 53.1° हैं। छड़ 2 m लम्बाई की है। छड़ के बाएँ सिरे से इसके गुरुत्व केन्द्र की दूरी d ज्ञात कीजिए।

उत्तर: माना एक समान छड़ AB का भार W2 है। यह छड़ दो डोरियों OA व O’B से लटकायी गई है। ऊर्ध्वाधर से OA छड़ से 36.9° व O’B छड़ से 53.1° कोण पर है।
<OAA’ = 90° – 36.9°
= 53.1°
इसी प्रकार, <O’ BB’ = 36.9°

AB – 2M, AC = d मीटर
माना डोरी OA व O’B में तनाव क्रमशः T1 व T2 है। यहाँ वियोजित घटक चित्रानुसार होंगे।
चूँकि छड़ विराम में है, अत: A’B’ अक्ष के अनुदिश व लम्बवत् लगने वाले बलों का सदिश योग शून्य है। अतः
– T1 cos 53.1° + T2 cos 36.9° = 0 ……………. (i)
तथा T1 sin 53.1° + T2 sin 36.9° – W = 0 ………………. (ii)
A के परित: बलाघूर्ण लेने पर व बलाघूर्णों के योग का शून्य रखने पर –
– (T2 sin 36.9°) × 2 + Wd = 0

प्रश्न 9. एक कार का भाग 1800 kg है। इसकी अगली और पिछली धुरियों के बीच की दूरी 1.8 m है। इसका गुरुत्व केन्द्र, अगली धुरी से 1.05 m पीछे है। समतल धरती द्वारा इसके प्रत्येक अगले और पिछले पहियों पर लगने वाले बल की गणना कीजिए।
उत्तर:
माना आगे के पहिए का द्रव्यमान = m ग्राम
∴ (900 – m) kg = प्रत्येक पहिए का द्रव्यमान

∴ m × 1.05 =(900 – m) × 0.75
या 1.8m = 900 × 0.75
या m = 375 kg
∴ 900 – m = 525 kg
आगे के प्रत्येक पहिये का भार,
W1 = mg = 375 × 9.8
= 3675 न्यूटन
पीछे के प्रत्येक पहिये का भार,
W2 = 525 × 9.8
= 5145 न्यूटन
पृथ्वी द्वारा पहिये पर आरोपित बल = पृथ्वी की प्रतिक्रिया
W2 = 3675 न्यूटन
इसी प्रकार, प्रत्येक पीछे के पहिये पर पृथ्वी द्वारा आरोपित बल = पृथ्वी की प्रतिक्रिया
W2 = 5145 न्यूटन

प्रश्न 10. (a) किसी गोले का, इसके किसी व्यास के परितः जड़त्व आघूर्ण 2MR2/5है, जहाँ M गोले का द्रव्यमान एवं R इसकी त्रिज्या है। गोले पर खींची गई स्पर्श रेखा के परितः इसका जड़त्व आघूर्ण ज्ञात कीजिए। (b) M द्रव्यमान एवं R त्रिज्या वाली किसी डिस्क का इसके किसी व्यास के परितः जड़त्व आघूर्ण MR2/4 है। डिस्क के लम्बवत् इसकी कोर से गुजरने वाली अक्ष के परितः इस चकती का जड़त्व आघूर्ण ज्ञात कीजिए।
उत्तर:
(a) माना व्यास AB के परित: R त्रिज्या के गोले का जड़त्व आघूर्ण IAB है। जबकि गोले का द्रव्यमान m है।

(b) माना M द्रव्यमान तथा R त्रिज्या के गोले के दो कास AB व CD हैं। माना चकती के लम्बवत् इसके द्रव्यमान केन्द्र O से गुजरने वाली अक्ष EF है। चकती के लम्बवत् अक्ष DG है जोकि चकती की परिधि पर स्थित बिन्दु D से गुजरती है। अर्थात् DG, EF के समान्तर है। माना चकती का EF अक्ष के परितः जड़त्व आघूर्ण IEF है।

प्रश्न 11. समान द्रव्यमान और त्रिज्या के एक खोखले बेलन और एक ठोस गोले पर समान परिमाण के बल आघूर्ण लगाये गये हैं। बेलन अपनी सामान्य सममित अक्ष के परितः घूम सकता है और गोला अपने केन्द्र से गुजरने वाली किसी अक्ष के परितः एक दिये गये समय के बाद दोनों में कौन अधिक कोणीय चाल प्राप्त कर लेगा?
उत्तर:
माना खोखले बेलन व ठोस गोले के द्रव्यमान व त्रिज्या क्रमश: M व R हैं।
माना खोखले बेलन का सममित के परित: जड़त्व आघूर्ण L1 है तथा ठोस गोले का केन्द्र के परितः जड़त्व आघूर्ण I2 है।

प्रश्न 12. 20 kg द्रव्यमान का कोई ठोस सिलिंडर अपने अक्ष के परितः 100 rad s-1 की कोणीय चाल से घूर्णन कर रहा है। सिलिंडर की त्रिज्या 0.25 m है। सिलिंडर के घूर्णन से संबद्ध गतिज ऊर्जा क्या है? सिलिंडर का अपने अक्ष के परितः कोणीय संवेग का परिमाण क्या है?
उत्तर:
दिया है:
m = 20 किग्रा
R = 0.25 मीटर
ω = 100 रेडियन प्रति सेकण्ड
माना बेलन की अक्ष के परितः जड़त्व आघूर्ण I है

प्रश्न 13. (a) कोई बच्चा किसी घूर्णिका (घूर्णीमंच) पर अपनी दोनों भुजाओं को बाहर की ओर फैलाकर खड़ा है। घूर्णिका को 40 rev/min की कोणीय चाल से घूर्णन कराया जाता है। यदि बच्चा अपने हाथों को वापस सिकोड़ कर अपना जड़त्व आघूर्ण अपने प्रारंभिक जड़त्व आघूर्ण का 2/5 गुना कर लेता है, तो इस स्थिति में उसकी कोणीय चाल क्या होगी? यह मानिए कि घूर्णिका की घूर्णन गति घर्षणरहित है।
(b) यह दर्शाइए कि बच्चे की घूर्णन की नयी गतिज ऊर्जा उसकी आरंभिक घूर्णन की गतिज ऊर्जा से अधिक है। आप गतिज ऊर्जा में हुई इस वृद्धि की व्याख्या किस प्रकार करेंगे?
उत्तर:
(a) माना बच्चे का प्रारम्भिक व अन्तिम जड़त्व आघूर्ण क्रमशः I1 व I2 है।
अतः

प्रश्न 14. 3 kg द्रव्यमान तथा 40 cm त्रिज्या के किसी खोखले सिलिंडर पर कोई नगण्य द्रव्यमान की रस्सी लपेटी गई है। यदि रस्सी को 30 Nबल से खींचा जाए तो सिलिंडर का कोणीय त्वरण क्या होगा? रस्सी का रैखिक त्वरण क्या है? यह मानिए कि इस प्रकरण में कोई फिसलन नहीं है।
उत्तर:
दिया है:
बेलन का द्रव्यमान,
M = 3 kg
बेलन की त्रिज्या R = 0.4 m
स्पर्शरेखीय बल F = 30 N
a = ?
α = ?
माना खोखले बेलन का अक्ष के परितः जड़त्व घूर्णन है।
अतः I = MR2
= 3(0.4)2
= 0.48 kg m2
माना बेलन पर आरोपित बलाघूर्णन t है।
अतः τ = FR = 30 × 0.4 = 12 Nm

प्रश्न 15. किसी घूर्णक (रोटर) की 200 rads-1 की एकसमान कोणीय चाल बनाए रखने के लिए एक इंजन द्वारा 180 Nm का बल आघूर्ण प्रेषित करना आवश्यक होता है। इंजन के लिए आवश्यक शक्ति ज्ञात कीजिए। (नोट : घर्षण की अनुपस्थिति में एकसमान कोणीय वेग होने में यह समाविष्ट है कि बल का आघूर्ण शून्य है। व्यवहार में लगाए गए बल आघूर्ण की आवश्यकता घर्षणी बल आघूर्ण को निरस्त करने के लिए होती है।) यह मानिए कि इंजन की दक्षता 100% है।
उत्तर:
दिया है:
ω = 200 रेडियन प्रति सेकण्ड
τ = 180 न्यूटन मीटर
P = ?
सम्बन्ध P = τw से,
P = 180 × 200
= 36000 वॉट
= 36 किलो वॉट

प्रश्न 16. R त्रिज्या वाली समांग डिस्क से R/2 त्रिज्या का एक वृत्ताकार भाग काट कर निकाल दिया गया है। इस प्रकार बने वृत्ताकार सुराख का केन्द्र मूल डिस्क के केन्द्र से R/2 दूरी पर है। अवशिष्ट डिस्क के गुरुत्व केन्द्र की स्थिति ज्ञात कीजिए।
उत्तर:

माना मूल बिन्दु O है।
माना Rcm बचे भाग का द्रव्यमान केन्द्र है।

ऋणात्मक चिह्न यह व्यक्त करता है कि बचे भाग का द्रव्यमान केन्द्र O से बाईं ओर है जोकि कटे भाग के केन्द्र के विपरीत ओर है।

प्रश्न 17. एक मीटर छड़ के केन्द्र के नीचे क्षुर – धार रखने पर वह इस पर संतुलित हो जाती है जब दो सिक्के, जिनमें प्रत्येक का द्रव्यमान 5g है, 12.0 cm के चिह्न पर एक के ऊपर एक रखे जाते हैं तो छड़ 45.0 cm चिह्न पर संतुलित हो जाती है। मीटर छड़ का द्रव्यमान क्या है?
उत्तर:
माना m ग्राम = द्रव्यमान/छड़ की ल० सेमी
माना m मीटर का कुल द्रव्यमान व m = 100 ग्राम है।
जब मीटर केन्द्र पर सन्तुलित होता है, तब प्रत्येक भाग का द्रव्यमान = 50 मी/ग्राम

माना 12 सेमी चिह्न पर रखे दो सिक्कों का द्रव्यमान m2 है।
m2 = 5 × 2 = 10 ग्राम
द्रव्यमान केन्द्र = 45 सेमी के चिह्न पर (बिन्दु A)
चूँकि छड़ी सन्तुलन में है। अतः बिन्दु A के परित: अलग-अलग द्रव्यमानों का आघूर्ण समान है।

या (3025 – 1089 – 936)
m = 330 × 2 = 660
या 1000m = 660
या m = 0.66 ग्राम
M = 100m = 100 × 0.66 = 66 ग्राम

प्रश्न 18. एक ठोस गोला, भिन्न नति के दो आनत तलों पर एक ही ऊँचाई से लुढ़कने दिया जाता है।
(a) क्या वह दोनों बार समान चाल से तली में पहुँचेगा?
(b) क्या उसको एक तल पर लुढ़कने में दूसरे से अधिक समय लगेगा?
(c) यदि हाँ, तो किस पर और क्यों?
उत्तर: माना तल – 1 पर निम्न बिन्दु से शिखर तक चली दूरी व झुकाव क्रमशः l2 व θ1 है।

तथा तल – 2 पर निम्न बिन्दु से शिखर तक चली दूरी व झुकाव क्रमश: l2 व θ2 है।
स्पष्ट है कि θ1 > θ2

जहाँ K घूर्णन त्रिज्या है।
समी० (ii) व (iii) से स्पष्ट है कि प्रत्येक स्थिति में गोला निम्न बिन्दु पर समान वेग से लौटता है।

(b) हाँ, यह तल – 1 पर तल – 2 से अधिक समय लेगा। यह समय कम झुकाव वाले तल के लिए अधिक होगा।
व्याख्या: माना तल – 1 व तल – 2 पर फिसलने में लिया गया समय क्रमशः t1 व t2 है।
ठोस गोले के लिए,

समय t, झुकाव कोण θ पर निर्भर करता है। अतः झुकाव कोण जितना कम होगा, गोला लुढ़कने में उतना ही अधिक समय लेगा।

प्रश्न 19. 2 m त्रिज्या के एक वलय (छल्ले) का भार 100 kg है। यह एक क्षैतिज फर्श पर इस प्रकार लोटनिक गति करता है कि इसके द्रव्यमान केन्द्र की चाल 20 cm/s हो। इसको रोकने के लिए कितना कार्य करना होगा?
उत्तर:
दिया है:
r = 2 मीटर
m = 100 किग्रा
द्रव्यमान केन्द्र का वेग,
y = 20 cms-1
= 0.20 मीटर/सेकण्ड
रोकने में व्यय कार्य = ?
माना वलय का कोणीय वेग ω है।

= 2 + 2 + 4J
∴ कार्य ऊर्जा प्रमेय से,
रोकने में व्यय कार्य = वलय की सम्पूर्ण KE
= 4 जूल

प्रश्न 20. ऑक्सीजन अणु का द्रव्यमान 5.30 × 10-26 kg है तथा इसके केन्द्र से होकर गुजरने वाली और इसके दोनों परमाणुओं को मिलाने वाली रेखा के लम्बवत् अक्ष के परितः जड़त्व आघूर्ण 1.94 × 10-46 kg m2 है। मान लीजिए कि गैस के ऐसे अणु की औसत चाल 500 m/s है और इसके घूर्णन की गतिज ऊर्जा, स्थानान्तरण की गतिज ऊर्जा की दो तिहाई है। अणु का औसत कोणीय वेग ज्ञात कीजिए।
उत्तर:
दिया है:
ऑक्सीजन अणु का द्रव्यमान
m = 5.30 × 10-26 किग्रा
ऑक्सीजन अणु का जड़त्वाघूर्णन
I = 1.94 × 10-46 किग्रा – मीटर
अणु का मध्य वेग v = 500 ms-1
औसत कोणीय चाल = ?
प्रश्नानुसार, घूर्णन की गतिज ऊर्जा,

प्रश्न 21. एक बेलन 30° कोण बनाते आनत तल पर लुढ़कता हुआ ऊपर चढ़ता है। आनत तल की तली में बेलन के द्रव्यमान केन्द्र की चाल 5 m/s है।
(a) आनत तल पर बेलन कितना ऊपर जायेगा?
(b) वापस तली तक लौट आने में इसे कितना समय लगेगा?
उत्तर: दिया है:
θ = 30°
तलों में बेलन के द्रव्यमान केन्द्र की चाल, u = 5 मीटर/सेकण्ड

प्रश्न 22. जैसा चित्र में दिखाया गया है, एक खड़ी होने वाली सीढ़ी के दो पक्षों BA और CA की लम्बाई 1.6 m है और इनको A पर कब्जा लगा कर जोड़ा गया है। इन्हें ठीक बीच में 0.5 m लम्बी रस्सी DE द्वारा बाँधा गया है। सीढ़ी BA के अनुदिश B से 1.2 m की दूरी पर स्थित बिन्दु F से 40 kg का एक भार लटकाया गया है। यह मानते हुए कि फर्श घर्षण रहित है और सीढ़ी का भार उपेक्षणीय है, रस्सी में तनाव और सीढ़ी पर फर्श द्वारा लगाया गया बल ज्ञात कीजिए। (g = 9.8 m/s2 लीजिए) (संकेत : सीढ़ी के दोनों ओर के संतुलन पर अलगअलग विचार कीजिए)

उत्तर: दिया है:
AB = AC = 1.6 मीटर
DE = 0.5 मीटर
AD = DB = AE = EC = 1.6/2 = 0.8 मीटर
BF = 1.2 मीटर
AF = 0.4 मीटर
माना रस्सी में तनाव = T
फर्श द्वारा सीढ़ी पर बिन्दु B व C पर आरोपित बल
= N’B NC = ?

W = 40 kg wt = 40 × 9.8 N = 392 N
माना = A’ = DE का मध्य बिन्दु
∴ DA’ = 5/2 = 25 m
DF’ = 125 m चित्र में स्पष्ट है कि
NB = Nc = W = 392 N ………… (i)
माना सीढ़ी AB व AC अलग-अलग सन्तुलन में है। A के परितः विभिन्न बलों का आघूर्ण लेने पर
NB × BC’ = W × DF’ + T × AA’ (AB सीढ़ी के लिए)
या NB × AB cos θ
= W × 0.125 + T × 0.8 sin θ ……………. (ii)

इसी सीढ़ी AC के लिए,
या NC × CC’ = T × AA’
या NC × AC cos θ = T × 0.8 sin θ ……………… (iii)

प्रश्न 23. कोई व्यक्ति एक घूमते हुए प्लेटफॉर्म पर खड़ा है। उसने अपनी दोनों बाहें फैला रखी हैं और उनमें से प्रत्येक में 5 kg भार पकड़ रखा है। प्लेटफॉर्म का कोणीय चाल 30 rev/min है। फिर वह व्यक्ति बाहों को अपने शरीर के पास ले आता है जिससे घूर्णन अक्ष से प्रत्येक भार की दूरी 90 cm से बदल कर 20 cm हो जाती है। प्लेटफॉर्म सहित व्यक्ति के जड़त्व आघूर्ण का मान 7.6 kg m2 ले सकते हैं।
(a) उसका नया कोणीय वेग क्या है? (घर्षण की उपेक्षा कीजिए)
(b) क्या इस प्रक्रिया में गतिज ऊर्जा संरक्षित होती है? यदि नहीं, तो इसमें परिवर्तन का स्त्रोत क्या है?
उत्तर: दिया है:
प्रत्येक हाथ में द्रव्यमान = 5 किग्रा
r1 = 90 cm = 0.90 मीटर
r2 = 20 cm = 0.20 मीटर
आदमी तथा प्लेटफॉर्म का जड़त्व आघूर्ण,
1 = 7.6 kgm2
माना r1 व r2 दूरी पर जड़त्वाघूर्ण क्रमशः I’1 व I’2 है।
तब सूत्र I = mr2 से,

नहीं, यहाँ गतिज ऊर्जा संरक्षित नहीं होगी? चूँकि घूर्णनी गति में कोणीय संवेग संरक्षित रहता है। अत: यह आवश्यक नहीं है कि घूर्णनी गतिज ऊर्जा भी संरक्षित रहे जिसे निम्न रूप में समझाया जा सकता है –

अर्थात् I के घटने पर घूर्णनी KE बढ़ती है। KE में यह परिवर्तन (i.e., वृद्धि) वस्तु के जड़त्वाचूर्ण को कम करने में व्यक्ति द्वारा किए गए कार्य के व्यय होने के कारण होता है।

प्रश्न 24. 10g द्रव्यमान और 500 m/s चाल वाली बन्दूक की गोली एक दरवाजे के ठीक केन्द्र में टकराकर उसमें अंत:स्थापित हो जाती है। दरवाजा 1.0 m चौड़ा है और इसका द्रव्यमान 12 kg है। इसके एक सिरे पर कब्जे लगे हैं और यह इनसे गुजरती एक ऊर्ध्वाधर अक्ष के परितः लगभग बिना घर्षण के घूम सकता है। गोली के दरवाजे में अंत:स्थापन के ठीक बाद इसका कोणीय वेग ज्ञात कीजिए। (संकेत : एक सिरे से गुजरती ऊर्ध्वाधर अक्ष के परितः दरवाजे का जड़त्व-आघूर्ण ML2/3 है)
उत्तर:
दिया है:
गोली का द्रव्यमान
m = 10g = 0.01
किग्रा गोली का वेग v = 500 मीटर/से०
दरवाजे की चौ० b = 1.0 मीटर
दरवाजे का द्र० M = 12 किग्रा
कोणीय चाल = ?
ऊर्जा संरक्षण के नियम से,

प्रश्न 25. दो चक्रिकाएँ जिनके अपने-अपने अक्षों (चक्रिका के अभिलंबवत् तथा चक्रिका के केंद्र से गुजरने वाले) के परितः जड़त्व आघूर्ण I1 तथा I2 हैं और जो तथा ω1 तथा ω2 कोणीय चालों से घूर्णन कर रही है, को उनके घूर्णन अक्ष संपाती करके आमने-सामने लाया जाता है?
(a) इस दो चक्रिका निकाय की कोणीय चाल क्या है?
(b) यह दर्शाइए कि इस संयोजित निकाय की गतिज ऊर्जा दोनों चक्रिकाओं की आरंभिक गतिज ऊर्जाओं के योग से कम है। ऊर्जा में हुई इस हानि की आप कैसे व्याख्या करेंगे? ω1 ≠ ω2 लीजिए।
उत्तर: माना I1 व I2 जड़त्व आघूर्ण वाली चकतियों की कोणीय चाल क्रमशः ω1 व ω2 है। सम्पर्क में लाने पर दोनों चकतियों के निकाय का जड़त्व आघूर्ण I1 + I2 होगा।
माना ω = पूरे निकाय की कोणीय चाल है।

(a) ∵ दोनों चकतियों के कुल प्रा० कोणीय संवेग,
L1 = I1 ω1 + I2ω2
संयुक्त निकाय का कुल अन्तिम कोणीय संवेग,
L2 = L1
या (I1 + I2)ω = I1ω1 + I2ω1

(b) दोनों चकतियों की प्रा० गतिज ऊर्जा

जोकि धनात्मक राशि है।
अतः E1 – E2 > 0 या E1 > E2
या E2 > E1 अर्थात् पूरे निकाय की घूर्णनी गतिज ऊर्जा दोनों चकतियों की प्रारम्भिक ऊर्जाओं के योग से कम है। अतः दो चकतियों को सम्पर्क में लाने पर, गतिज ऊर्जा में कमी आती है। यह कमी दोनों चक्रिकाओं की सम्पर्कित सतहों के बीच घर्षण के बल के कारण होती है।

प्रश्न 26. (a) लम्बवत् अक्षों के प्रमेय की उपपत्ति करें। संकेत (x, y) तल के लम्बवत् मूल बिन्दु से गुजरती अक्ष से किसी बिन्दु x – y की दूरी का वर्ग (x2 + y2) है
(b) समांतर अक्षों के प्रमेय की उपपत्ति करें(संकेत : यदि द्रव्यमान केन्द्र को मूल बिन्दु ले लिया जाये तो Σmiri = 0)
उत्तर:

(a) समकोणिक (लम्ब) अक्षों की प्रमेयकिसी समतल पटल को उसके तल में ली गई दो परस्पर लम्बवत् अक्षों OX तथा OY के परित: जड़त्व आघूर्णों का योग इन अक्षों के कटान बिन्दु O में को जाने वाली तथा पटल के तल के लम्बवत् अक्ष OZ के परित: जड़त्व आघूर्ण के बराबर होता है। पटल का अक्ष OZ के परितः जड़त्व आघूर्ण Iz = Iz + Iy
जहाँ Iz तथा Iy पटल का क्रमश: अक्ष OX तथा OY के परितः जड़त्व आघूर्ण है।

सिद्ध करना:
माना एक पटल है जिसके तल में दो परस्पर लम्बवत् अक्षं OX तथा OY ली गई हैं अक्ष OZ पटल के तल के अभिलम्बवत् है तथा OX व OY के कटान बिन्दु०से गुजरती है। माना अक्ष OZ से r दूरी पर m द्रव्यमान का एक कण P है। इस कण का अक्ष OZ के परितः जड़त्व आघूर्ण mr2 होगा। अतः पूरे पटल का अक्ष OZ के परित: जड़त्व आघूर्ण
Iz = Σmr2
लेकिन r2 = x2 + y2

जहाँ x व y कण भी क्रमश: अक्षों OY व OX से दूरियाँ हैं।
∴ I2 = Σm(x2 + y2)
= Σmx2 + Σmy2
लेकिन Ix = Σmx2 तथा Iy = Σmy2
अतः Ix = Iz + Iy

(b) समान्तर अक्षों की प्रमेय-किसी पिंड का किसी अक्ष के परितः जड़त्व आघूर्ण (I) उस पिंड के द्रव्यमान केन्द्र में को जाने वाली समान्तर अक्ष के परितः जड़त्व आघूर्ण (Icm) तथा पिंड के द्रव्यमान व दोनों अक्षों के बीच की लम्बवत् दूरी के वर्ग के गुणनफल के योग के बराबर होता है।
I = Icm + Ma2
जहाँ M पिंड का द्रव्यमान है तथा a दोनों अक्षों के बीच लम्बवत् दूरी है।

सिद्ध करना:
माना एक समतल पटल है जिसका द्रव्यमान केन्द्र C है। माना पटल का पटल के तल में स्थित अक्ष AB के परितः जड़त्व आघूर्ण I है तथा इसके द्रव्यमान केन्द्र C से गुजरने वाली समान्तर अक्ष EF के परितः जड़त्व आघूर्ण Icm है। माना AB तथा EF अक्षों के बीच लम्बवत् दूरी a है। माना EF अक्ष से दूरी पर m द्रव्यमान का एक कण P है। P की AB से दूरी (r + a) होगी। P का AB के परितः जड़त्व आघूर्ण m(r + a)2 होगा। अतः पूरे पटल का AB अक्ष के परितः जड़त्व आघूर्ण

I = Σm(r + a)2
= Σm(r2 + a2 + 2ar)
I = Σmr2 + Σma2 + 2aΣmr
अथवा I = Σmr2 + a2Σ + 2aΣmr
लेकिन Icm = Σmr2
तथा a2Σm = a2M
तथा Σmr = 0 क्योंकि किसी पटल के समस्त कणों का पटल के द्रव्यमान केन्द्र में से गुजरने वाली अक्ष के परित: आघूर्णों का योग शून्य होता है। अतः
I = Icm + Ma2

प्रश्न 27. स्पष्ट कीजिए कि चित्र (प्रश्न 7.28) में अंकित दिशा में चक्रिका की लोटनिक गति के लिए घर्षण होना आवश्यक क्यों है?
(a) B पर घर्षण बल की दिशा तथा परिशुद्ध लुढ़कन आरंभ होने से पूर्व घर्षणी बल आघूर्ण की दिशा क्या है?
(b) परिशुद्ध लोटनिक गति आरंभ होने के पश्चात् घर्षण बल क्या है?
उत्तर:
(a) बिन्दु B पर घर्षण बल B के वेग का विरोध करता है। अतः घर्षण बल तीर की दिशा में होगा। घर्षण बल आघूर्ण के कार्य करने की दिशा इस प्रकार है कि वह कोणीय गति का विरोध करता है। ω0 व τ दोनों ही कागज के पृष्ठ के अभिलम्बवत् कार्य करते हैं। इनमें ω0 कागज के पृष्ठ के अंतर्मुखी व र कागज के पृष्ठ के बहिर्मुखी है।
(b) घर्षण बल सम्पर्क – बिन्दु B के वेग को कम कर देता है। जब यह वेग शून्य होता है तो चक्रिका की लोटन गति आदर्श सुनिश्चित हो जाती है। एक बार ऐसा हो जाने पर घर्षण बल का मान शून्य हो जाता है।

प्रश्न 28. 10 cm त्रिज्या की कोई ठोस चक्रिका तथा इतनी ही त्रिज्या का कोई छल्ला किसी क्षैतिज मेज पर एक ही क्षण 10π rads-1 की कोणीय चाल से रखे जाते हैं। इनमें से कौन पहले लोटनिक गति आरंभ कर देगा। गतिज घर्षण गुणांक µk = 0.2
उत्तर:
दिया है:
छल्ले तथा ठोस चक्रिका की त्रिज्या,
R = 10 सेमी – 0.1 मीटर
µk = 0.2
छल्ले का जड़त्व आघूर्ण = MR2 …………… (i)
ठोस चक्रिका का जड़त्व आघूर्ण = 1/2mR2 …………….. (ii)
प्रा० कोणीय वेग = ω0 = 10π रेडियन/सेकण्ड
घर्षण बल के कारण गति होती है तथा घर्षण के कारण द्रव्यमान केन्द्र त्वरित होता है। छल्ला शून्य प्रारम्भिक वेग से चलता है। प्रारम्भिक कोणीय वेग ω0 में मन्दन घर्षण बलाघूर्ण के कारण होता है।
हम जानते हैं कि F = µkN = ma
या µkmg = ma
या a = µkg ……………. (iii)
तथा बलाघूर्ण τ = -Iα
= FR = µkmgR ……………. (iv)
जहाँ R = चकती या वलय की त्रिज्या
ऋणात्मक चिह्न प्रदर्शित करता है कि मन्दन बलाघूर्ण है।
यहाँ u = 0
∴ v = u + at से
v = at or a = v/t
समी० (iii) से a = µkg
या v/t = µkg
या v = µkgt (छल्ले के लिए)
तथा = µkgt’ (चकती के लिए) …………….. (v)
समी० (iv) से

माना छल्ले की t समय व चकती की t’ समय बाद कोणीय वेग
∴ सम्बन्ध ω = ω0 + αt से,

एकदम फिसलने की शर्त लगाने पर (i.e., V = Rω), छल्ले के लिए

तथा चकती के लिए,

अतः समी० (xii) व (xiii) से स्पष्ट है कि t’ < t अर्थात् चकती पहले फिसलना प्रारम्भ करेगी।

प्रश्न 29. 10 kg द्रव्यमान तथा 15 cm त्रिज्या का कोई सिलिंडर किसी 30° झुकाव के समतल पर परिशुद्धतः लोटनिक गति कर रहा है। स्थैतिक घर्षण गुणांक µs = 0.25
(a) सिलिंडर पर कितना घर्षण बल कार्यरत है?
(b) लोटन की अवधि में घर्षण के विरुद्ध कितना कार्य किया जाता है?
(c) यदि समतल के झुकाव में वृद्धि कर दी जाए तो के किस मान पर सिलिंडर परिशुद्धतः लोटनिक गति करने की बजाय फिसलना आरंभ कर देगा?
उत्तर: दिया है:
m = 10 kg, R = 0.15 m, θ = 30°, µk = 0.25
(a) बेलन पर लगने वाला घर्षण बल –

(b) चूँकि परिशुद्ध लोटनिक गति में, सम्पर्क बिन्दु पर कोई सरकन गति नहीं है। इसलिए घर्षण बल के विरुद्ध कृत कार्य, W = 0 है।

(c) लोटनिक गति के लिए,

प्रश्न 30. नीचे दिए गए प्रत्येक प्रकथन को ध्यानपूर्वक पढ़िए तथा कारण सहित उत्तर दीजिए कि इनमें से कौन-सा सत्य है और कौन-सा असत्य है –

  1. लोटनिक गति करते समय घर्षण बल उसी दिशा में कार्यरत होता है जिस दिशा में पिंड का द्रव्यमान केंद्र गति करता है।
  2. लोटनिक गति करते समय संपर्क बिंदु की तात्क्षणिक चाल शून्य होती है।
  3. लोटनिक गति करते समय संपर्क बिन्दु का तात्क्षणिक त्वरण शून्य होता है।
  4. परिशुद्ध लोटनिक गति के लिए घर्षण के विरुद्ध किया गया कार्य शून्य होता है।
  5. किसी पूर्णतः घर्षणरहित आनत समतल पर नीचे की ओर गति करते पहिए की गति फिसलन गति (लोटनिक गति नहीं) होगी।

उत्तर:

  1. सत्य, चूँकि स्थानान्तरीय गति घर्षण बल के कारण ही उत्पन्न होती है। इसी बल के कारण पिंड का द्रव्यमान आगे की ओर बढ़ता है।
  2. सत्य, चूँकि लोटनिक गति, सम्पर्क बिन्दु पर सी गति के समाप्त होने पर प्रारम्भ होती है। इस प्रकार परिशुद्ध लोटनिक गति में सम्पर्क बिन्दु की तात्क्षणिक चाल शून्य होती है।
  3. असत्य चूँकि घूर्णन गति के कारण, सम्पर्क बिन्दु की गति में अभिकेन्द्र त्वरण अवश्य ही विद्यमान होता है।
  4. सत्य चूँकि परिशुद्ध लोटनिक गति में सम्पर्क बिन्दु पर कोई सरकन नहीं होता है। इस कारण घर्षण बल के विरुद्ध किया गया कार्य शून्य होता है।
  5. सत्य, घर्षण के न होने पर आनत तल पर छोड़े गए पहिए का आनत तल के साथ सम्पर्क बिन्दु विरामावस्था में नहीं रहेगा बल्कि पहिए के भार के अधीन माना तल के अनुदिश फिसलता जाएगा। इस कारण यह गति लोटनिक न होकर विशुद्ध सरकन गति होगी।

Leave a Reply

Your email address will not be published. Required fields are marked *