Bihar Board Class 11th Physics Solutions Chapter 13 अणुगति सिद्धांत
Bihar Board Class 11th Physics Solutions Chapter 13 अणुगति सिद्धांत
Bihar Board Class 11th Physics अणुगति सिद्धांत Text Book Questions and Answers
अभ्यास के प्रश्न एवं उनके उत्तर
प्रश्न 1. ऑक्सीजन के अणुओं के आयतन और STP पर इनके द्वारा घेरे गए कुल आयतन का अनुपात ज्ञात कीजिए। ऑक्सीजन के एक अणु का व्यास 3 A लीजिए।
उत्तर: दिया है:
अतः अणुओं के आयतन तथा STP पर इनके द्वारा घेरे गए आयतन का अनुपात 3.8 × 10-4 है।
प्रश्न 2. मोलर आयतन STP पर किसी गैस (आदर्श) के 1 मोल द्वारा घेरा गया आयतन है। (STP : 1 atm) दाब, 0°C दर्शाइये कि यह 22.4 लीटर है।
उत्तर: दिया है:
STP पर,
P = 1 atm = 7.6 m of Hg column
= 0.76 × 13.6 × 103 × 9.9
= 1.013 × 105 Nm-2
T = 0°C = 273 K
R = 8.31 J mol-1K-1
n = 1 मोल V = 22.41 सिद्ध करने के लिए, सूत्र PV = nRT से,
प्रश्न 3.चित्र में ऑक्सीजन के 1.00 × 10-3 kg द्रव्यमान के लिए PV/T एवं P में, दो अलग-अलग तापों पर ग्राफ दर्शाये गए हैं।
(a) बिंदुकित रेखा क्या दर्शाती है?
(b) क्या सत्य है : T1 > T2 अथवा T1 < T2?
(c) y – अक्ष पर जहाँ वक्र मिलते हैं वहाँ PVIT का मान क्या है?
(d) यदि हम ऐसे ही ग्राफ 100 × 10-3 kg हाइड्रोजन के लिए बनाएँ तो भी क्या उस बिंदु पर जहाँ वक्र y – अक्ष से मिलते हैं PV/T का मान यही होगा? यदि नहीं तो हाइड्रोजन के कितने द्रव्यमान के लिए PV/T का मान (कम दाब और उच्च ताप के क्षेत्र के लिए वही होगा? H2 का अणु द्रव्यमान = 2.02 u, O2 का अणु द्रव्यमान = 32.0 u, R = 8.31J mol-1K-1)
उत्तर:
(a) बिन्दुकित रेखा यह व्यक्त करती है कि राशि PV/T स्थिर है। यह तथ्य केवल आदर्श गैस के लिए सत्य है। अर्थात् बिन्दुकित रेखा आदर्श गैस का ग्राफ है।
(b) ताप T2 पर ग्राफ की तुलना में ताप T1 पर गैस का ग्राफ आदर्श गैस के ग्राफ के अधिक समीप है। हम जानते हैं कि वास्तविक गैसें निम्न ताप पर आदर्श गैस के व्यवहार से अधिक विचलित होती हैं। अत: T1 > T2
(c) जहाँ ग्राफ -अक्ष पर मिलते हैं ठीक उसी बिन्दु पर आदर्श गैस का ग्राफ भी गुजरता है। अतः इस बिन्दु पर ऑक्सीजन गैस, आदर्श गैस का पालन करती है।
अत: गैस समीकरण से,
(d) नहीं, हाइड्रोजन गैस के लिए PV/T का मान समान नहीं रहता है। चूँकि यह द्रव्यमान पर निर्भर करता है तथा H2 का द्रव्यमान O2 से कम है।
माना हाइड्रोजन का अभीष्ट द्रव्यमान m किया है जिसमें PV/T का समान मान प्राप्त होता है।
प्रश्न 4. एक ऑक्सीजन सिलिंडर जिसका आयतन 30 लीटर है, में ऑक्सीजन का आरंभिक दाब 15 atm एवं ताप 27°C है। इसमें से कुछ गैस निकाल लेने के बाद प्रमापी (गेज)दाब गिर कर 11 atm एवं ताप गिर कर 17°C हो जाता है। ज्ञात कीजिए कि सिलिंडर से ऑक्सीजन की कितनी मात्रा निकाली गई है। (R = 8.31J mol-1K-1, ऑक्सीजन का अणु द्रव्यमान O2 = 32 u)।
उत्तर: दिया है:
ऑक्सीजन सिलिण्डर में प्रारम्भ में
V1 = 30 litres = 30 × 10-3 m3
P1 = 15 atm = 15 × 1.013 × 105 Pa
T1 = 27 + 273 = 300 K
R = 8.31 JK-1mol-1
माना सिलिण्डर में ऑक्सीजन गैस के n1 मोल हैं।
अतः सूत्र PV = nRT से,
प्रश्न 5.वायु का एक बुलबुला, जिसका आयतन 1.0 cm3 है, 40 m गहरी झील की तली में जहाँ ताप 12°C है, उठकर ऊपर पृष्ठ पर आता है जहाँ ताप 35°C है। अब इसका आयतन क्या होगा?
उत्तर: जब वायु का बुलबुला 40 मी० गहराई पर है तब
V1 = 1.0 cm3 = 1.0 × 10-6m3
T1 = 12°C
= 12°C – 12 + 273 = 285 K
= 1 atm + 40 m पानी की गहराई
P1 = 1 atm – h1ρg
= 1.013 × 105 + 40 × 103 × 9.8
= 493000 Pa
= 4.93 × 105 Pa
जब वायु का बुलबुला झील की सतह पर पहुँचता है तब
V2 = ?, T2 = 35°C
= 35 + 273
= 308 K
P2 = 1 atm = 1.013 × 105 Pa
सूत्र
प्रश्न 6. एक कमरे में, जिसकी धारिता 25.0 m3 है, 27°C ताप और 1 atm दाब पर, वायु के कुल अणुओं (जिनमें नाइट्रोजन, ऑक्सीजन, जलवाष्प और अन्य सभी अवयवों के कण सम्मिलित हैं) की संख्या ज्ञात कीजिए।
उत्तर: दिया है:
V = 25.0 m3
T = 27°C = 27 + 273 = 300 K
K = 1.38 × 10-23 JK-1
P = 1 atm = 1.013 × 105 Pa
प्रश्न 7. हीलियम परमाणु की औसत तापीय ऊर्जा का आंकलन कीजिए –
(i) कमरे के ताप (27°C) पर
(ii) सूर्य के पृष्ठीय ताप (6000 K) पर
(iii) 100 लाख केल्विन ताप (तारे के क्रोड का प्रारूपिक ताप) पर।
उत्तर: गैस के अणुगति सिद्धान्त के अनुसार, ताप T पर गैस की औसत गतिज ऊर्जा (i.e., औसत ऊष्मीय ऊर्जा) निम्नवत् है –
E = 32 KT
दिया है: k = 1.38 × 10-23 JK-1
(i) T = 27°C = 273 + 27 = 300 K पर,
E = 3/2 × 1.38 × 10-23 × 300
= 621 × 10-23 J
= 6.21 × 10-21 J
(ii) T = 6000K पर
∴E = 3/2 × 1.38 × 10-23 × 6000
= 1.24 × 10-19 J
(iii) T = 10 × 106 K पर,
∴ E = 3/2 × 1.38 × 10-23 × 107
= 2.07 × 10-16 J
= 2.1 × 10-16 J
प्रश्न 8. समान धारिता के तीन बर्तनों में एक ही ताप और दाब पर गैसें भरी हैं। पहले बर्तन में नियॉन (एकपरमाणुक) गैस है, दूसरे में क्लोरीन (द्विपरमाणुक) गैस है और तीसरे में यूरेनियम हेक्साफ्लोराइड (बहुपरमाणुक) गैस है। क्या तीनों बर्तनों में गैसों के संगत अणुओं की संख्या समान है? क्या तीनों प्रकरणों में अणुओं की vrms (वर्गमाध्य मूल चाल) समान है।
उत्तर:
(a) हाँ, चूँकि आवोगाद्रों परिकल्पना से, समान परिस्थितियों में गैसों के समान आयतन में अणुओं की संख्या समान होती है।
अतः तीनों गैसों के ग्राम-अणु भार अलग-अलग हैं। अतः अणुओं की वर्ग माध्य-मूल चाल अलग-अलग होगी।
प्रश्न 9. किस ताप पर आर्गन गैस सिलिंडर में अणुओं की vrms, 20°C पर हीलियम गैस परमाणुओं की vrms के बराबर होगी। (Ar का परमाणु द्रव्यमान = 39.91 एवं हीलियम का परमाणु द्रव्यमान = 4.0 u)।
उत्तर: माना कि T1 व T2 K ताप पर आर्गन व हीलियम गैस की वर्ग माध्य मूल वेग क्रमश: C1 व C2 हैं।
दिया है:
M1 = 39.9 × 10-3 kg,
M2 = 4.0 × 10-3 kg, T1 = ?
T2 = -20 + 273 = 253 K
हम जानते हैं कि वर्ग माध्य मूल वेग
या T = 2523.7 K = 2524 K
= 2.524 × 103K
प्रश्न 10. नाइट्रोजन गैस के एक सिलिंडर में, 2.0 atm दाब एवं 17°C ताप पर नाइट्रोजन अणुओं के माध्य मुक्त पथ एवं संघट्ट आवृत्ति का आंकलन कीजिए। नाइट्रोजन अणु की त्रिज्या लगभग 1.0 A लीजिए। संघट्ट काल की तुलना अणुओं द्वारा दो संघट्टों के बीच स्वतंत्रतापूर्वक चलने में लगे समय से कीजिए। (नाइट्रोजन का आण्विक द्रव्यमान = 28.0 u)।
उत्तर: मैक्सवेल संशोधन ने गैस अणुओं का मध्य मुक्त पद
अतः दो क्रमागत टक्करों के मध्य समय टक्कर में लिये गए समय का 500 गुना है। इससे यह प्रदर्शित होता है कि गैस के अणु लगभग हर समय मुक्त रूप से चलायमान रहते हैं।
Additional Important Questions and Answers
अतिरिक्त अभ्यास के प्रश्न एवं उनके उत्तर
प्रश्न 11. 1 मीटर लंबी संकरी ( और एक सिरे पर बंद) नली क्षैतिज रखी गई है। इसमें 76 cm लंबाई भरा पारद सूत्र, वायु के 15 cm स्तंभ को नली में रोककर रखता है। क्या होगा यदि खुला सिरा नीचे की ओर रखते हुए नली को ऊर्ध्वाधर कर दिया जाए।
उत्तर: प्रारम्भ में नली क्षैतिज है तब बंद सिरे पर रोकी गई वायु का दाब वायुमण्डलीय दाब के समान होगा।
∴ P1 = 76 सेमी पारे स्तम्भ का दाब।
माना कि नली का अनुप्रस्थ क्षेत्रफल A सेमी2 है।
वायु का आयतन = 15 × A = 15A सेमी3
जब नली का खुला सिरा नीचे की ओर रखते हैं तथा ऊर्ध्वाधर करते हैं जब खुले सिरे पर बाहर की ओर से वायुमण्डलीय दाब कार्य करता है जबकि ऊपर की ओर से 76 सेमी पारद सूत्र का दाब व बंद सिरे पर एकत्र वायु का दाब अधिक है।
अतः पारद सूत्र असंचुलित रहेगा व नीचे गिरते हुए वायु को बाहर निकाल देता है। माना कि पारद सूत्र की 2 लम्बाई नीचे नली से बाहर निकलती है।
∴ नली में पारद सूत्र की शेष लम्बाई = (76 – h) सेमी
तथा बंद सिरे पर वायु स्तम्भ की लम्बाई
= (15 + 9 + h)
= (24 + h) सेमी
तथा वायु का आयतन V2 = (24 + h) A सेमी3
माना कि इस वायु का दाब P2 है।
∴ सन्तुलन में,
P2 + (76 – h) सेमी पारद सूत्र का दाब = वायुमण्डलीय दाब
∴P2 = R सेमी पारद सूत्र का दाब
सूत्र P1V1 = P2V2 से
76 × 15A = h × (24 + h) A
या 1140 = 24h + h2
या h2 + 24h – 1140 = 0
= 28.23 या – 4784 सेमी
परन्तु h ≠ ऋणात्मक
∴ h = 28.23 सेमी।
अतः पारद सूत्र की 28.23 सेमी लम्बाई नली से बाहर निकल जाएगी।
प्रश्न 12. किसी उपकरण से हाइड्रोजन गैस 28.7 cm3 s-1 की दर से विसरित हो रही है। उन्हीं स्थितियों में कोई दूसरी गैस 7.2 cm3 s-1 की दर से विसरित होती है। इस दूसरी गैस को पहचानिए।
[संकेत : ग्राहम के विसरण नियम R1/R2 = (M2/M1)1/2 का उपयोग कीजिए, यहाँ R1, R2 क्रमशः
गैसों की विसरण दर तथा M2 एवं M2 उनके आण्विक द्रव्यमान हैं। यह नियम अणुगति सिद्धांत का एक सरल परिणाम है।]
उत्तर: विसरण के ग्राहम के नियम से,
प्रश्न 13. नीचे कुछ ठोसों व द्रवों के घनत्व दिए गए हैं। उनके परमाणुओं की आमापों का आंकलन (लगभग)कीजिए।
[संकेत : मान लीजिए कि परमाणु ठोस अथवा द्रव प्रावस्था में दृढ़ता से बंधे हैं तथा आवोगाद्रो संख्या के ज्ञात मान का उपयोग कीजिए। फिर भी आपको विभिन्न परमाण्वीय आकारों के लिए अपने द्वारा प्राप्त वास्तविक संख्याओं का बिल्कुल अक्षरशः प्रयोग नहीं करना चाहिए क्योंकि दृढ़ संवेष्टन सन्निकटन की रुक्षता के परमाणवीय आकार कुछ Å के परास में हैं।
उत्तर: